
First JSPS-NWO Seminar

Research Network on Learning in Machines
New Perspectives for Future Nanoscale Production

3-7 July 2023

Tokyo, Japan

Book of Abstracts



First JSPS-NWO Seminar: Research Network on Learning in Machines Book of Abstracts

The First JSPS-NWO Seminar “Research Network on Learning in Machines: New Perspectives for Future Nanoscale

Production” is sponsored by

Leontine Aarnoudse1, Max van Haren1, Masahiro Mae2, Wataru Ohnishi2, Tom Oomen1,3 and Kentaro

Tsuromoto2

1Leontine Aarnoudse, Max van Haren and Tom Oomen are with the Eindhoven University of Technology, The Nether-
lands.
2Masahiro Mae, Wataru Ohnishi and Kentaro Tsuromoto are with the University of Tokyo, Japan
3Tom Oomen is with the Delft Center for Systems and Control, Delft University of Technology, The Netherlands.

2



Book of Abstracts First JSPS-NWO Seminar: Research Network on Learning in Machines

Welcome message

The purpose of this seminar is to bring together researchers who have the ambition to push the boundaries of manu-
facturing machines and scientific instruments. The topic is centrally organised around a fundamentally new framework
for controlling manufacturing machines and scientific instruments by exploiting and learning from data. This will lead
to unparalleled performance for state-of-the-art high-tech systems that are presently still controlled by traditional con-
trol philosophies that do not exploit the major opportunities of the abundance of data.

Manufacturing machines and scientific instruments have a key role in our society. Wafer scanner technology is arguably
the most important example in this respect, since Integrated Circuits (ICs) have led to ubiquitous computing power,
leading to major developments in communication, medical equipment, transportation, etc. In fact, Moore’s law dic-
tates a doubling of IC complexity every two years, which is enabled by progress in wafer scanner technology. This
wafer scanner technology is developed primarily by industries in The Netherlands and Japan, and it is crucial that this
advantage is reinforced.

Positioning systems, or motion systems, are key in wafer scanner technology because they enable accurate position-
ing of the ICs within manufacturing machines. Future machines must achieve a high accuracy of 0.1 nm to allow for a
doubling of IC complexity through miniaturization. At the same time, extreme speeds and accelerations are required
to achieve high throughput and hence market viability of the machine and low cost of IC production for the end-user.

Although major achievements have been made to follow Moore’s law already for decades, a major breakthrough in the
control paradigm is foreseen to be essential to continue the exponential growth of Moore’s law. The aim of this semi-
nar is to exploit the huge amount of sensors, actuators, and data in controlling high-tech mechatronic systems, such as
wafer scanners, to the limits of performance. Indeed, the working hypothesis of this seminar is that everything in the
system’s behaviour that can be predicted can also be compensated for. However, this is by no means possible through
traditional design philosophies that are still common in the current state-of-the-art systems. The goal is to bring to-
gether researchers to develop a new fundamental design framework for learning from data in complex mechatronic sys-
tems in view of new generations of future data-intensive mechatronic systems with unparalleled performance.

On a longer horizon, the research will have a major impact on the development of radically new data-intensive mecha-
tronic systems, where the use of data and control will be used to design radically different and lightweight systems.
Indeed, a radically new view on mechatronic design, automatic control, and machine learning is foreseen, where new
system designs will be combined with spatially distributed actuators that control spatiotemporal deformations, lead-
ing to a huge potential in speed and accuracy. These systems will be continuously monitored in real time through data
and models, which constitute digital twins, to monitor their performance, identify faults, and use predictive mainte-
nance.

We welcome everyone to the seminar, and look forward to new collaborations.

Finally, we thank JSPS and NWO for the generous support through the Joint Seminars program, enabling the ex-
change of a large number of early career researchers.

Tom Oomen (NL) and Wataru Ohnishi (JP), General organisers
Leontine Aarnoudse (NL), Max van Haren (NL), Masahiro Mae (JP), Kentaro Tsurumoto (JP), Editors
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(Machine) learning for feedforward

in precision mechatronics

Leontine Aarnoudse1 and Tom Oomen1,2

I. RESEARCH OVERVIEW

High tracking performance for mechatronic systems re-

quires accurate feedforward control, which can be learned

from data through dedicated efficient algorithms. This research

is positioned at the intersection of machine learning (neural

nets, random learning), controls (feedforward), and precision

mechatronics. First, an overview of three different research

topics is given, and secondly the topic of nonlinear filters in

iterative learning control (ILC) is elaborated upon.

Randomized experiments lead to efficient learning of MIMO

feedforward signals [1]

A trick using adjoints allows gradient-based ILC to be run

fully model-free, yet this does not extend well to multivariable

systems: generating gradients requires n

i
× n

o
experiments

per iteration and is comparable to tuning by turning one

knob at a time. Instead, an unbiased gradient estimate can

be generated through one experiment for any MIMO system.

All experiments are run simultaneously (‘turn all knobs’) in

randomized directions. These gradient estimates lead to fast

convergence of a stochastic gradient descent algorithm ( ),

which is much more efficient than deterministic approaches

( ) that may diverge when data is noisy ( ).
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Neural networks for flexible feedforward: cost functions, model

structures and training data [2]

Neural networks are promising for flexible feedforward

control, but combining them in a harmonious way with state-

of-the-art feedback control is subtle and requires care:

*This work is part of the research programme VIDI with project number

15698, which is (partly) financed by the NWO.
1The authors are with the Dept. of Mechanical Engineering, Control

Systems Technology, Eindhoven University of Technology, Eindhoven, The

Netherlands. l.i.m.aarnoudse@tue.nl
2Tom Oomen is also with the Delft Center for Systems and Control, Delft

University of Technology, Delft, The Netherlands.

• The cost function used for training should reflect the aim

of minimizing the tracking error, as ‖ftrain − fnn‖, with

e(ftrain) = 0, being small does not necessarily mean that

e(fnn) will be small.

• The model structure should allow for non-causal feedfor-

ward, as many systems contain delays.

• Training data, consisting of references and feedforward

signals, should be generated in closed-loop, for example

using ILC, as nonlinearities manifest along trajectories.

The figure compares the performance of ftrain ( ), and non-

causal time-delay ( ) and recurrent neural networks ( ).
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Weighting the errors that matter: cross-coupled iterative learn-

ing control [3]

For contour tracking applications, the error in time domain

is less important than the deviation from the contour. Cross-

coupled ILC can be used to design feedforward signals for

these specific cases, by using a cost function that weights this

contour error explicitly. The cost function also weights the

error tangential to the contour error, to allow for specifying

different aims in different parts of the trajectory. For example,

one might want to slow down in sharp corners and make up

for lost time when moving straight. The figure shows contour

tracking ( ) with ( ) and without ( ) cross-coupled ILC.
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II. SEMINAR TOPIC - NONLINEAR ITERATIVE LEARNING

CONTROL [4]

Iterative learning control (ILC) can attenuate repeating

disturbances completely, yet it also amplifies iteration varying

disturbances up to a factor two [5]. The aim of this research

is to develop a nonlinear ILC framework that achieves fast

convergence, robustness, and low converged error values in

ILC. To this end, a nonlinear deadzone is added to the learn-

ing filter, which differentiates between varying and repeating

disturbances based on their amplitude characteristics and ap-

plies different learning actions: fast attenuation of repeating

disturbances, and slow averaging of varying disturbances.

A. Problem formulation

C P

y

d
e

j
y

j

−

f

j
ṽ

j

ILC is applied to the SISO LTI system above, according to

e

j
= S(y

d
− ṽ

j
)− Jf

j
, f

j+1 = Q(f
j
+ αLe

j
) (1)

with S = (1 + PC)−1
, J = SP and L ≈ J

−1. Robustness

filter Q is typically a low-pass filter. The learning gain

α ∈ (0, 1] influences both the number of iterations required

to compensate the iteration-invariant disturbance y

d
, and the

amplification of iteration-varying disturbance v

j
, as illustrated

for α = 1 ( ), 0.5 ( ), 0.2 ( ) and 0.1 ( ). The aim is to

achieve both small converged errors and fast convergence.
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B. Approach: nonlinear ILC

To achieve both fast convergence and limited amplification

of varying disturbances, a deadzone nonlinearity ϕ is included

in the feedforward update, such that

f

j+1 = Q(f
j
+ αLe

j
+ Lϕ(e

j
)), (2)

with, for deadzone width δ and gain γ > 0,

ϕ(e
j
(k)) =

{
0, if |e

j
(k) ≤ δ(

γ −
γδ

|ej(k)|

)
e

j
(k), if |e

j
(k)| > δ.

(3)

The deadzone nonlinearity satisfies an incremental sector

condition with γ, which enables convergence analysis, leading

to the following convergence condition:∥∥∥Q(1− αJL−

γ

2
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

< 1. (4)

Through the deadzone with width δ ( ), a high learning gain

is applied to the iteration-invariant disturbance ( ) and the

amplification of iteration-varying disturbances is limited.
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C. Conclusions and future work

A nonlinear frequency-domain ILC algorithm ( ) is de-

veloped that achieves both fast convergence and a small con-

verged error in the presence of iteration-varying disturbances,

as compared in simulation to standard ILC with α = 1 ( ),

0.5 ( ) and 0.2 ( ). Ongoing research is aimed at extending

this approach to lifted ILC and repetitive control.
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of Technology. Her research interests are centered

around the development of learning control theory
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Study of Current Command Generation Method for

Iron Loss Reduction in Permanent Magnet

Synchronous Motors

Kaiki Akizuki1, Toshiyuki Fujita12, Sakahisa Nagai1,3 and Hiroshi Fujimoto1,4

I. RESEARCH OVERVIEW

Permanent Magnet Synchronous Motors(PMSMs) are

widely used for their high efficiency, ease of maintenance,

and controllability advantages. Particularly, interior permanent

magnet synchronous motors(IPMSMs) are often used for

electric vehicles due to its large torque. For further effective

utilization of energy, it is necessary to drive PMSMs with

high efficiency through control.Analyzing the causes of driving

loss and taking measures are important in order to achieve

the high efficient motor driving. The loss of PMSM is mainly

classified into the copper loss and the iron loss.The copper loss

occurs in the motor windings and the iron loss occurs in the

electromagnetic steel sheet. Typical examples of high efficient

current control are id = 0 control and maximum torque per

ampere (MTPA) control. These methodologies reduce copper

loss. However,these are not necessarily the most efficient

control methods because they do not take the iron loss into

account.

Topic 1 Plant model of IPMSM.

The IPMSM model on dq coordinate system is shown in

Fig. 1.The dq axis voltage equation is expressed as follows:

Fig. 1. IPMSM model

[
v

d

v

q

]
=

[
R+ sL

d
−ω

e
L

q

ω

e
L

d
R+ sL

q

] [
i

d

i

q

]
+

[
0

ω

e
K

e

]
(1)

Since the dq axis current has coupling terms, the decoupling

1
,
2
,
3
,
4 The authors are with the University of Tokyo, Japan, corresponding

e-mail: akizuki.kaiki22@ae.k.u-tokyo.ac.jp.

control is widely used. In order to eliminate the cou- pling

terms, the dq voltages are calculated as follows:

v

d
= v

′
d
− ω

e
L

q
i

q
(2)

v

q
= v

′
q
+ ω

e
(L

q
i

d
+K

e
) (3)

State variables are defined as the dq axis current and inputs

are defined as the decoupled dq axis voltage. The IPMSM

continuous time equation of state is expressed as follows:

ẋ(t) = A

c
x(t) +B

c
u(t), y(t) = C

c
x(t) +D

c
u(t) (4)

where

x(t) =

[
i

d
(t)

i

q
(t)

]
, u(t) =

[
v

′
d

(t)
v

′
q
(t)

]
(5)

A

c
=

[
−

R

Ld
0

0 −
R

Lq

]
, B

c
=

[
R

Ld
0

0 R

Lq

]
, C

c
=

[
1 0
0 1

]
, D

c
= O

(6)

Causes of iron loss[1,2].

The iron loss occurs in the iron core of PMSM and

is broadly classified into the hysteresis loss and the eddy

current loss. The IPMSM core contains various harmonic

components of magnetic flux density,and these components

increase the iron loss caused by minor loops of the

hysteresis loop.Harmonic currents are one of the factors

that increase iron loss.By using Repetitive Perfect Tracking

Control(RPTC),harmonic currents are suppressed and iron loss

is reduced.RPTC consists of Perfect tracking controll(PTC)

combined with repetitive control.Iron loss is determined by

subtracting output, copper loss, and mechanical loss from

input power.

Fig. 2. Block diagram of RPTC
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II. SEMINAR TOPIC - Current command generation method

A. Evaluation of iron loss of PI controll and RPTC

The motor bench which I use now can directly measure

magnetic field information.On the drive side, a coil for measur-

ing the magnetic field strength and a search coil for measuring

the magnetic flux density are located.The electrical signals

obtained from the coils are acquired with an oscilloscope,

and the data is processed in MATLAB for direct iron loss

evaluation.

Fig. 3 shows the dq-axis current results with PI control

and with RPTC applied.It was confirmed that the application

of RPTC reduced current harmonics compared to PI con-

trol.Furthermore, the iron loss evaluation during each current

control is shown in Fig. 4 by BH curve.In this case, the iron

loss in the teeth was measured, and the area of the BH curve is

the iron loss value.Fig. 5 shows that the iron loss was reduced

when RPTC was applied compared to the case with PI control.

Fig. 3. PI control and RPTC dq-axis currents

Fig. 4. Iron loss comparison by BH curve(haemonic suppression)

B. Consideration for current harmonic injection

From the results in Figure 4, we considered that the injection

of current harmonics may reduce the iron loss in some

cases.Fig. 5 shows the current harmonic injection method.This

system injects harmonics into the commanded value of 3-

phase current.Fig. 6 shows a comparison of iron loss by

BH curve when only one of the three phases injects current

harmonics and when PI control is used.The results in Fig. 6

experimentally confirm the case where iron loss is reduced

even when harmonic currents are injected.

Fig. 5. Harmonic currents injection method

Fig. 6. Iron loss comparison by BH curve(harmonic injection)

III. CONCLUSION

The above results suggest that there is an optimal cur-

rent command value for the purpose of iron loss reduction.

Therefore, we will theoretically consider how to generate the

optimum current command value in the future.
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Sciences, the University of Tokyo. His interests are
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Loop-Shaping Technique for Hard Disk Drive

Takenori Atsumi1

I. RESEARCH OVERVIEW

The future of the cloud service is dependent on the hard

disk drive (HDD) capacity growth because demands for the

data capacity in the cloud service are rapidly increasing. To

solve this issue, we are going to improve the accuracy of a

magnetic-head positioning control system so that size of bits

for data stored on a disk decreases. In this paper, we have

proposed the control system design method for the quadruple-

stage actuator system which is a future technology for HDDs.

Quadruple-stage actuator system in HDD.

Fig. 1 shows the basic schematics of the control system

for the quadruple-stage actuator system in the HDDs. The

controlled object in this system is the multi-input single-output

(MISO) system.

Fig. 1. Magnetic-head positioning system with quadruple-stage actuator

system.

Fig. 2 shows the block diagrams of the control system for

the quadruple-stage actuator system. Here, CVCM is the feed-

back controller for the VCM, CMil is the feedback controller

for the milli actuator, CMic is the feedback controller for the

micro actuator, CThe is the feedback controller for the thermal

actuator, I
p

is the interpolator, NVCM is the multi-rate notch

filter for the VCM, NMil is the multi-rate notch filter for the

milli actuator, NMic is the multi-rate notch filter for the micro

actuator, H is the zero-order hold (ZOH), H
m

is the multi-

rate ZOH, PVCM is the VCM, PMil is the milli actuator, PMic

is the micro actuator, PThe is the thermal actuator, S is the

sampler, r is the reference, e is the error, yMil is the output

signal from PMil, yMic is the output signal from PMic, yThe is the

output signal from PThe, d is the disturbance, y
c

is the actual

magnetic-head position, and y

d
is the measured magnetic-head

position.

1 Takenori Atsumi is with the Department of Mechanical Engi-
neering, Chiba Institute of Technology, Japan, corresponding e-mail:

takenori.atsumi@p.chibakoudai.jp.

Fig. 2. Block diagram of initial control system.

Rboust Bode plot.

The controller design with the Robust Bode (RBode) plot

uses two weighting functions: W
S

(for the sensitivity function)

and W

T
(for the co-sensitivity function). Here, P

r
is the real

plant, P is the nominal plant, C is the feedback controller, and

Δ
m

is the multiplicative uncertainty. P
r

is given as follows:

P

r
= P (1 + Δ

m
). (1)

The nominal open-loop characteristics L, nominal sensitivity

function S, and nominal co-sensitivity function T are given

as follows:

L = PC, S =
1

1 + L

, T =
L

1 + L

. (2)

The weighting function W

T
specifies the plant uncertainty as

follows:

|W
T
| > |Δ

m
| =

∣∣∣∣Pr

P

− 1

∣∣∣∣ . (3)

The weighting function W

S
specifies the robust performance

as follows:

|W
S
|
−1

>

∣∣∣∣ 1

1 + P

r
C

∣∣∣∣ . (4)

If L is stable and S and T satisfy

|W
T
T |+ |W

S
S| =

|W
T
L|+ |W

S
|

|1 + L|

< 1, (5)

then the control system achieves (4).

Solving (5) for |L|, we have

(1− |W
T
|
2)|L|2 + 2(cos(∠L)− |W

T
||W

S
|)|L|

+1− |W
S
|
2
> 0.

(6)

Solving (5) for cos(∠L), we have

cos(∠L) >
|W

S
|
2
− 1

2|L|
+ |W

T
||W

S
|+

(
|W

T
|
2
− 1
)
|L|

2
. (7)

The RBode plots partition the conventional Bode plots into

allowable regions that meet the specific robust performance

criterion and forbidden regions that do not meet the criteria

(6) and (7).
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II. SEMINAR TOPIC - Loop-Shaping Technique for

Quadruple-Stage Actuator System in HDD

In the quadruple-stage actuator system, the micro and ther-

mal actuators have narrow ranges of movements. This means

that these actuators can NOT work when their movements are

over their ranges under a large disturbance. Therefore, we have

to design a control system that makes |yMic| and |yThe| small

even if the control system has a large disturbance.

To solve the above-mentioned problem, we have proposed

the control system shown in Fig. 3 for the quadruple-stage

actuator system. Here, LVCM is the transfer function from e

to yVCM, LMil is that from e to yMil, LMic is that from e to

yMic, and LThe is that from e to yThe. F
l1 is the loop-shaping

filter for LVCM and LMil. Fl2 is the loop-shaping filter for L

(the transfer function from e to y

d
). In the proposed method,

F

l1 is used to reject the large disturbances, and F

l2 is used

to increase the stability margins of the control system. By

using this framework, we can reject the large disturbances

without increasing the |yMic| or |yThe| because the loop-shaping

filters do not increase the gain of LMic nor LThe around the

disturbance frequencies.

Fig. 3. Block diagram of proposed control system.

Fig. 4 shows the RBode plot with the initial control system.

In the RBode plot, we can see the relationship between the

open-loop characteristics and the robust performance criteria.

The gray area indicates the forbidden regions. When the open-

loop characteristic does not overlap the forbidden regions

on the RBode plot, the control system meets the robust

performance criteria. Therefore, Fig. 4 indicates that we have

to increase the gain of the open-loop characteristic from 100

to 400 Hz and decrease the gain around the Nyquist frequency

to meet the robust performance criteria.

Fig. 4. RBode plot with initial control system.

In order to eliminate overlapping between the forbidden

regions and the open-loop characteristics, we designed the

loop-shaping filters F

l1 and F

l2. Fig. 5 show the RBode plot

with F

l1 and F

l2. This figure indicates that the open-loop

characteristics with F

l1 and F

l2 meet the robust performance

criteria for all frequencies.

Fig. 5. RBode plot with Fl1 and Fl2.

To evaluate the positioning accuracy of the magnetic-head

positioning control system, we have to see the magnetic-head

position in the continuous time y

c
. Fig. 6 shows the simulation

results of y

c
. In these figures, (a) shows the results with

the initial control system, and (b) shows that with the pro-

posed control system. These results indicate that the proposed

method enables us to improve the positioning accuracy by

about 78%.

(a) Initial control system. (b) Proposed control system.

Fig. 6. Simulation results of yc.
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Learning for data-intensive industrial machines

Lennart Blanken1,2, Max van Haren1, and Tom Oomen1,3

I. RESEARCH OVERVIEW

The productivity and product quality of many manufacturing

systems hinge on the performance of mechatronic positioning

systems. Examples include large-format printing systems, see

Fig. 1a, and the intelligent substrate carrier for industrial

printing, see Fig. 1b. To meet future requirements on accuracy,

speed, and product dimensions, it is foreseen that a significant

increase is required in the complexity of positioning systems.

This leads to the manifestation of pronounced disturbances and

complex dynamical behavior, including large numbers of dy-

namic modes, inherently multivariable behavior, and position-

dependent behavior, which potentially restrict performance of

control systems.

(a) Large-format printing system (b) Intelligent substrate carrier

Fig. 1: Data-intensive mechatronic positioning systems.

A new control design paradigm is foreseen to manage the

increasing system complexity. The key observation is that

over the operational lifetime of a machine, huge amounts of

data becomes available, while this data is often not exploited

in control. The aim of this research is to enable radical

performance improvements in future positioning systems by

improving control systems through learning from data. By

exploiting the abundance of data in mechatronic systems,

in potential performance can be achieved up to the limit

of reproducibility, far beyond what can be achieved with

traditional model-based control approaches.

The key challenge in successful application of learning al-

gorithms to industrial machines lies in managing their extreme

systems complexity, while guaranteeing fast and safe learning

to avoid machine downtime and production losses.

This research is supported by ECSEL 101007311 (IMOCO4.E).
1 The authors are with the Control Systems Technology research section,

Eindhoven University of Technology, the Netherlands, corresponding e-mail:

l.l.g.blanken@tue.nl.
2 Also with Sioux Technologies, Eindhoven, the Netherlands.
3 Also with the Delft Center for Systems and Control, Delft University of

Technology, the Netherlands.

Multivariable learning control designs: balancing modeling

effort with performance [1]–[3].

Although learning control is conceptually promising for

complex mechatronic systems, it is not often employed in

industrial environments due to associated high modeling re-

quirements. To this end, developments have been made for

multivariable learning controllers, including Iterative Learning

Control (ILC) [1] and Repetitive Control (RC) [2], [3], that

explicitly address trade-offs between modeling and perfor-

mance requirements. This is done by judiciously combining

limited parametric model knowledge with the use of non-

parametric frequency response function (FRF) models, and

the development of various user-friendly design techniques,

ranging from decentralized approaches to centralized designs.

Learning for feedforward control: the use of prior knowledge

[4]–[7].

To enable extreme performance in the presence of varying

tasks, a parametrized feedforward control structure can be

adopted whose parameters are to be learned from data. The key

difficulty lies in selecting a suitable model structure and order,

particularly in view of the extreme system complexity of future

industrial machines. A crucial aspect is the use of system

knowledge, i.e., prior information, while retaining sufficient

freedom to effectively learn from data. In particular, prior

knowledge is exploited to

• construct parsimonious parametrizations [4], [6] with

beneficial properties for control (non-causality) and opti-

mization (convexity);

• address model order selection for (non-causal) feedfor-

ward control in a systematic manner [5]; and

• construct physics-motivated parametrizations for

position-dependent feedforward that facilitate engineering

interpretation [7].

Identification above the Nyquist frequency [8], [9].

The performance and convergence properties of learning

control algorithms heavily rely on the used models. This is

especially crucial for learning control since the control action

is potentially effective over the entire frequency range up to the

Nyquist frequency, and high-frequency dynamics, including

intersample behavior, can hence not be ignored. A method is

developed for fast and accurate FRF identification up to and

beyond the Nyquist frequency of multirate systems [8], [9].

The key aspect is that aliased contributions can be uniquely

distinguished and disentangled by exploiting local smoothness

of the system response.
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II. SEMINAR TOPIC - REPETITIVE CONTROL DESIGN

FOR INDUSTRIAL MACHINES

Repetitive control (RC) can significantly improve the con-

trol performance of systems that are subject to dominantly

periodic disturbances. The control action is periodically up-

dated on the basis of past measurement data in combination

with a model of the system to guarantee closed-loop stability,

see Fig. 2 for a typical implementation.

The aim of this seminar is to present a tutorial on RC design,

that has enabled successful applications in industrial machines.

e y

−

C G

Q Lz−N

r

R

Fig. 2: Add-on repetitive control configuration.

A. Robust Design for Industrial Machines

Robust stability of RC algorithms is crucial to deal with

inevitable, and often deliberate, modeling errors. A technical

analysis is presented that facilitates robust RC design while

taking into account the trade-off between performance and

modeling requirements. In particular, a systematic design

approach is presented that uses low-order approximate nominal

models for control design, and considers the deliberate mod-

eling errors as uncertainty, i.e., through robust stability, which

can be directly evaluated using inexpensive nonparametric

FRF measurements, see Fig. 3.
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Fig. 3: Models for robust RC design: low-order parametric models
(blue) for nominal control design, and non-parametric multivariable
FRF measurement (grey) that enables direct evaluation of robust
stability.

B. Application to Large-Format Printing System of Fig. 1a
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Fig. 4: Power spectral density (PSD) of servo errors before (red) and
after RC convergence (blue), visualizing the performance increase.
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Time Optimal Temperature Control

in Semiconductor Vertical Furnace

Christian Milleneuve Budiono1, Wataru Ohnishi1, Takafumi Koseki1,

Akira Hirata2, Ryosuke Shibatsuji2, Tatsuya Yamaguchi2

I. RESEARCH OVERVIEW

Semiconductor vertical furnace (Fig. 1) is an equipment in

the semiconductor manufacturing process used for some front-

end processes, such as oxidation and layer deposition. It is

classified as batch type, which processes approximately 100

wafers at once. Faster and more precise control of this equip-

ment will contribute to the improvement in the throughput of

the semiconductor manufacturing process.

Processes in this furnace use Chemical Vapor Deposition

(CVD) method. Gases react with wafers producing layers

through chemical reactions. The reactions occur at certain

temperatures; thus, temperature rise and fall are common

operations. The faster these operations are, the shorter the

time consumed for each process. Moreover, the layer thickness

is affected by the operating temperature. Even layers on the

wafer surface can be achieved by controlling the temperature

precisely.

Flow divider

Inner 

thermocouples

Wafers

Process tube

Heater

Boat

Blower

Quartz fin

Insulator

.

.

.

.

Heat

exchanger

Hot air flow

Cooled air flow

Fig. 1: Semiconductor vertical furnace. [1]

Plant Description [2].

Fig. 2 shows two main problems in the temperature control

of semiconductor vertical furnace: temperature dependency [3]

and location dependency. As shown in Fig. 3, the equipment

can be described as an MIMO plant system with the power of

heater and cooler devices as inputs, and the temperatures as

outputs.

Moreover, the heater and cooler were integrated using a

constant gain to achieve a simple SISO plant [1]. This idea

has enabled a more intuitive controller design in frequency

domain [1].

1 The authors are with the Department of Electrical Engineering and

Information Systems Graduate School of Engineering, The University of

Tokyo, Japan.
2 The authors are with the Tokyo Electron Technology Solutions Ltd.

(a) Temperature dependency. (b) Location dependency.

Fig. 2: Two main problems in temperature control of semi-

conductor vertical furnace. In (a), the plant characteristics

change with temperature difference. In (b), the temperature

distribution is uneven.

Fig. 3: Semiconductor vertical furnace as target plant. u
h
, u

c
, ȳ

are heater power, cooler power, and temperature [2].
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II. SEMINAR TOPIC - FAST TEMPERATURE RISE

USING TIME OPTIMAL CONTROL

A. Plant System Identification

Due to the temperature dependency property, the system

identification was conducted in the closed-loop configuration,

as shown in Fig. 4. Each input-to-output frequency response

was determined in separate experiments. To prevent any dead

zones during the identification of a particular input, a constant

value was added to the other input.

Fig. 5 shows the identification results. The plant was gen-

erally second-order, with heater-to-temperature response had

a higher gain compared to cooler-to-temperature response.

(a) Heater identification.

(b) Cooler identification.

Fig. 4: Closed-loop system identification scheme.

Fig. 5: System identification result.

B. Time Optimal Control Control Algorithm

The time optimal control was proposed to utilize the maxi-

mum capacity of the heater and cooler. This can be formulated

as an optimization problem determining the heater time t

h
and

the overall time tmax. In Eq. 1, y represents temperature. yaim
is the temperature aim. Also, t, u means time, input power,

and subscript h, c means heater, cooler, respectively.

min
tmax

|y(tmax)− yaim|

subj.to y(tmax) < yaim

min
th

dy

dt

∣∣∣∣
tmax

subj.to t

h
+ t

c
= tmax, 0 < t

h
, t

c
≤ tmax

u

h
(t) =

{
100 0 < t ≤ t

h

0 t

h
< t ≤ tmax

u

c
(t) =

{
0 0 < t ≤ t

h

100 t

h
< t ≤ tmax

y(0) = ystart

(1)

(a) FB only. (b) TO+FB. (c) TO+FB+FF+Traj.

Fig. 6: Simulation results (TO: time optimal, Traj.: target

trajectory). (b), (c) has no overshoots. (c) has the least error.

III. CONCLUSION AND FUTURE WORKS

Simulation results show that time optimal control was able

to achieve fast temperature rise without overshoots. Further

examinations on the constant value effect during system iden-

tification, other approaches to achieve fast temperature control,

and the solution to the location dependency problem will be

done.
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Vertical Vibration Suppression Control Using

Disturbance Observer for In-wheel Motor EV

Considering Under-sprung Motion

Qi Chen1, Binhmin Nguyen1 Sakahisa Nagai1 and Hiroshi Fujimoto1

I. RESEARCH OVERVIEW

Riding comfort attracts attention with the development of

In-Wheel-Motor EVs. Aiming for vertical vibration suppres-

sion and enhancement of robustness against the nominal error,

this paper proposes a disturbance observer combined with

triple skyhook control. Simulation and experiments are carried

out to prove the effectiveness of the proposed method.

Suspension reaction force.

The horizontal driving force generated by torque output of

motors or engines can be converted to vertical direction due to

the feature of instant rotation motion around a instant center

of rotation(ICR). Thus some vertical motion control can be

down with torque output control, aka, driving force control.

Considering the angle between rotation arm and ground to be

θ, the vertical reaction force F

c
can be given as following,

where F

d
represents the driving force:

F

c
= F

d
tan θ (1)

Quarter Car Vibration Model.

A quarter car model with 1/4 body mass m2, a suspension

system with damper c

s
and sprung k

s
, under-sprung mass

m1 and tire characteristics k

t
, c

t
shown in the graph can

be described with following equations, where F

c
represents

controller input force (here, the suspension reaction force):{
m1z1s

2 = −(c
s
s+ k

s
)(z1 − z2) + (c

t
s+ k

t
)(z0 − z1)− F

c

m2z2s
2 = (c

s
s+ k

s
)(z1 − z2) + F

c

(2)

And the transfer function of vibration can be given as:

z2 =
c

s
s+ k

s

m2s
2 + c

s
s+ k

s

z1 +
1

m2s
2 + c

s
s+ k

s

F

c
(3)

1 The authors are with the Graduate School of Frontier
Sciences The University of Tokyo, Japan, corresponding e-mail:

chen-qi4396@g.ecc.u-tokyo.ac.jp.

Triple Skyhook Control.

With the transfer function equation(2), [1] proposed a

skyhook controller based on the coefficient cancellation as

following, where α is a tunable gain:

F

c
= −α(m2s

2 + c

s
s+ k

s
)z2 (4)

With this controller, the vibration of body mass can be

suppressed by 1

1+α

as following:

z2 =
1

1 + α

c

s
s+ k

s

m2s
2 + c

s
s+ k

s

z1 (5)

Also, a low-pass filter is usually used to deal with high

frequency sensor noise and enhance system stability with a

cut-off frequency around 10Hz, which is the upper bound of

the control target frequency based on human sensitivity.
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II. SEMINAR TOPIC - Design of Vertical Vibration

Suppression Controller

A. Problem of Conventional Methods

Fig. 1. Controller structure

1) Offset and Noise of Vibration Sensor: To make the

algorithm practical in real vehicle plant, the feedback sensor

noise and offset should be considered. In [1], a low pass filter

with cutoff frequency of 10Hz is used to deal with the noise

as well as enhance the stability of controller. But considering

the double integrator characteristic of equation(4) when using

the acceleration feedback, a small offset of the feedback signal

may cause a fast diverge of suspension force output. Thus, an

1Hz high pass filter is necessary according to experiments.

2) Robustness against Model error: To enhance the robust-

ness of triple skyhook(tSH) control, which is based on the

vehicle plant parameter, a disturbance observer based structure

[2] is introduced to help reduce the sensitivity toward β to γ

shown in fig.1. The sensitivity of both situations can be given

as:

G0tSH
=

G

tSH
G

Pn

1 +G

tSH
G

Pn

(6)

G0DOB
=

G

tSH
G

Pn
− k

ob
Q

1 +G

tSH
G

Pn

(7)

Thus the sensitivity towards model error δG
p

can be reduced

with the structure of DOB.

In some previous researches [3], a simple inertial nominal

model shown as equation(8) is used to help suppress the

vibration.

P

ndc

−1 =
T

z̈2

=
r

tanθ

m2 (8)

However, considering the use of high pass filter, this kind of

simple model cannot help the vibration suppression perfor-

mance, which means some improvement need to be done to

help achieve a better vibration suppression.

B. Proposal Design of Controller

Aiming on the enhancement of vibration suppression with

the use of high pass filter, which mainly influence the low

frequency performance, a two-inertial frame structure based

nominal model is proposed as following:

P

ndp

−1 =
T

z̈2

=
r

tanθ

(m2 +
c

s

s

m1 +m2

m1

+
k

s

s

2

m1 +m2

m1

)

(9)

With the characteristic of integrator, the vibration feedback

of low frequency is replenished to enhance the suppression

performance.

C. Simulation

The simulation result are shown in fig.2 with both frequency

and time domain.

Fig.2.1 shows the transfer characteristics from road distur-

bance input to sprung mass vibration with the using of both

low pass filter(10Hz) and high pass filter(1Hz) to deal with

sensor noise and offset. As it is shown in the graph, conven-

tional tSH method(green) shows little effect below 3Hz. The

proposal tSH+DOB structure with traditional inertia nominal

model(black) shows nearly the same performance. And the

proposal method with newly designed nominal model(red)

has a better performance in low frequency while the same

performance to conventional method in high frequency.

Fig.2.2 shows the time domain simulation with the imagi-

native road disturbance in around 2Hz. Compared to conven-

tional tSH, which has a suppression of 10% peak to peak and

23.5% in RMSE(to the situation without control), the proposal

method reduces the peak to peak value about 22% and the

RMSE about 40.5%(to the situation without control), which

clearly shows the effectiveness of proposal method.

(a) Simulation in frequency domain (b) Simulation in time domain

Fig. 2. Simulation result
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Fault Diagnosis for Precision Mechatronics

Koen Classens1, W.P.M.H. (Maurice) Heemels1 and Tom Oomen1,2

I. RESEARCH OVERVIEW

The economic value of high-tech production equipment is

proportional to its productivity. A key enabler for high produc-

tivity in manufacturing machines are positioning systems. The

accuracy and speed of these positioning systems rely on an

excellent and refined mechanical design in conjunction with

effective control algorithms. In spite of exceptional mechan-

ical system design and advanced control strategies, high-tech

production equipment continues to experience considerable

downtime. To minimize this downtime, fault diagnosis systems

are essential which facilitate effectively scheduled and targeted

maintenance such that productivity is maximized [1]. First,

an overview of three different research topics is given, each

considering a different model-class, as indicated in the figure

below. Secondly, the seminar topic of optimal H−/H∞ fault

diagnosis is examined [2].

Parametric Fault Diagnosis [3].

A key indicator for increased risk for failures is the shifting

of resonances. Such change in G

u
can be considered as a

parametric fault, fpar, and is particularly important as it affects

closed-loop performance and stability margins. The aim is

to track this time-varying behavior online and during normal

operation through computationally cheap online algorithms.

Algorithms, dedicated for closed-loop mechatronic systems,

are developed and its effectiveness is illustrated on an over-

actuated and oversensed setup which allows to artificially

manipulate its effective resonances.

This work is supported by Topconsortia voor Kennis en Innovatie (TKI),

and is supported by ASML Research, Veldhoven, The Netherlands.
1 The authors are with the Dept. of Mechanical Engineering, Control

Systems Technology, Eindhoven University of Technology, the Netherlands,

corresponding e-mail: k.h.j.classens@tue.nl.
2 Tom Oomen is with the Delft Center for Systems and Control, Delft

University of Technology, Delft, The Netherlands.

Nullspace-based Fault Detection and Isolation for Large Mul-

tivariable Systems [4], [5].

Fault Detection and Isolation (FDI) is the process of detect-

ing faults and pinpointing its origin. It is shown that effective

fault diagnosis filters can be synthesized to isolate additive

faults, fadd, in real-time and optimally attenuate disturbances

d. By means of a numerical case study and experimental

validation on a next-eneration prototype wafer stage, the effec-

tiveness of this algorithm is illustrated. The system guarantees

fault detection and isolation of a large number of imposed

actuator and sensor faults. To this end, a bank residuals signals,

ε, is used.

Robust Fault Diagnosis for Closed-loop Systems [6].

The effect of modeling uncertainties, Δ, is crucial in the

model-based FDI concept. To guarantee a specified fault de-

tectability on the true system, this uncertainty should explicitly

be taken into account during fault diagnosis filter synthesis.

Robust FDI synthesis tools are developed and are based upon

fundamental theory of control such as LMI and Riccati-

based optimization, and a generalization of the structured

singular value, μ

g
. This approach gives robust performance

guarantees and allows to discriminate between unmodeled

system dynamics, disturbances and faulty system behavior.
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II. SEMINAR TOPIC - DIRECT SHAPING OF MINIMUM AND

MAXIMUM SINGULAR VALUES FOR FAULT DIAGNOSIS

In this section, a framework is developed for the design and

synthesis of optimal H−/H∞ Fault Detection Filters [2].

A. Problem Formulation

Consider the block diagram depicted below, with weighted

generalized disturbances d̃, weighted faults f̃ , and the perfor-

mance channel ε. The objective is to find an admissible resid-

ual generator Q which shapes the sensitivity to disturbances

by constraining σ̄(T
εd̃

) < γ, while simultaneously shaping the

sensitivity to faults through constraining σ(T
εf̃

) > ν, where

γ, ν > 0. Hence, a fault diagnosis filter Q is said to satisfy

H−/H∞ specifications if

1) Q is proper and asymptotically stable;

2)

∥∥∥T
εf̃

(s)
∥∥∥
−
> ν;

3)
∥∥
T

εd̃

(s)
∥∥
∞

< γ.

Better fault detection performance is achieved when the gap

J := ν

γ

increases.

B. Approach

First the problem is casted into a generic framework with

generalized plant P and the unknown filter Q, see the block

diagram above. Next, the problem is posed as an optimiza-

tion problem. The ratio J is indirectly maximized through

maximizing ν, while constraining γ, i.e.,

max
Q∈RH∞,X�0,ν>0,γ=γ0

ν,

subject to (∗),
(1)

where γ = γ0. Additionally, (∗) indicates the minimum gain

lemma and the bounded real lemma and X is a common Lya-

punov variable, see [2] for details regarding the optimization.

The solution is a set of matrix inequalities containing one BMI,

which is solved iteratively by solving sequential LMIs.

C. Results

The developed framework is validated on a closed-loop

system which is depicted as ( ) without weighting filters,

i.e., T
εd

and T

εf
. The obtained bounds γG

−1

d

and νG

−1

f

are

depicted as ( ). Indeed, a filter Q is found that satisfies the

shaped upperbound and lowerbound. The residual generator is

updated to compensate for the remaining gap between T

εd
and

γG

−1

d

, i.e., Q2 =
γG

−1

d

Tεd
Q, without affecting J . The closed-

loop system with the updated Q2 is shown as ( ).

D. Conclusion and Outlook

A new method to solve the H−/H∞ problem is presented.

In particular, a method is proposed to shape the minimum

and maximum singular value of the closed-loop performance

channels and its effectiveness is illustrated in the context of

fault diagnosis. The approach can directly be implemented

in combination with various multiobjective matrix inequalities

and applied to synthesize filters for a wide range of control

and estimation problems. Next, more emphasis will be put

on including modeling uncertainty for robust fault diagnosis.

In addition, the proposed robust fault diagnosis filters will be

implemented on a next-generation wafer stage.
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Control in Gravitational Wave detectors

Mathyn van Dael1,2, Gert Witvoet1,3, Bas Swinkels2 and Tom Oomen1,4

I. RESEARCH OVERVIEW

Gravitational Wave (GW) detectors measure spatial fluctu-

ations induced by violent cosmic events such as for example

the merger of black holes. Current generation detectors such as

Virgo [1] and KAGRA [2] employ laser interferometry using

several kilometer long arms (L
W

, L

N
) to measure spatial

fluctuations in the order of 1× 10−18 m. Control systems play

a vital role in the operation and sensitivity of the detector.

Cavity locking

The lengths of optical cavities, i.e. distances between mir-

rors, have to be actively controlled for the detector to operate.

The error signals for these feedback loops use the Pound-

Drever-Hall (PDH) [3] method to obtain an error signal ( )

that is locally linear ( ). The linear region of these error

signals are smaller than 1 nm, while the seismically induced

motion of the mirrors before the cavities are controlled are in

the order of 1 μm.
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3 Bas Swinkels is with Nikhef, The Netherlands
4 Tom Oomen is with Delft University of Technology, The Netherlands.

Currently the cavities are locked by waiting for the error

signal to be in the linear regime, at which time the linear

feedback controller is engaged. Three cavities furthermore

have to be locked simultaneously, requiring all three cavities to

be in the linear regime of their error signal. The combination

of the many degrees of freedom and poor weather conditions

complicates the locking procedure and results in a reduced

duty cycle of the detector. The goal of this research is to

estimate the cavity lengths in a wider range of the non-linear

error signal using non-linear state estimation techniques, to

allow faster locking of the cavities and increase the duty cycle

of the detector.

System with time-varying levels of interaction.

Three degrees of freedom in the Virgo detector exhibit

strong levels of interaction and these interaction terms further-

more vary in amplitude and direction in a timespan of minutes

[4]. The figure below shows the MIMO frequency response

of the plant for the three loops, where the colored lines

represents measurements of the frequency response, each taken

one week apart. The SISO control loops require sufficient sta-

bility margins to guarantee MIMO closed-loop stability. These

degrees of freedom also couple strongly to the sensitivity of

the detector and low bandwidth controllers with large roll-off

is therefore desired to minimize this coupling. The required

stability margins therefore pose a limit on the amount of roll-

off that can be achieved. The goal of this research is to develop

a method maximizes the system performance in view of the

varying levels of interaction.
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II. SEMINAR TOPIC - Integrated Dynamic Error Budgetting

and H2 synthesis

This section discusses the development of an integrated

Dynamic Error Budget (DEB) and H2 synthesis.

A. Problem formulation

The arms that determine the interference pattern of the

detector constist of cavities in which the light resonates up and

down several hundred times in order to increase the effective

length of the cavity. This resonance condition is attained when

it holds that

Lcav = N ·

λ

2
, (1)

with Lcav the cavity length in m, λ the wavelength of the

laser in m and N an integer number. Both the cavity length

and laser frequency fluctuate several orders more than the

required stability andare therefore actively controlled in a

control system of three nested loops, each highlighted by

a colored rectangular box in the block diagram below. The

performance variable, the laser frequency fluctuations δνMC,

is influenced by all three loops and is furthermore subject

to different disturbances coupling to the output, making it

difficult to identify which controller to optimize and how.
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B. Approach

The approach constist of two steps. First, a Dynamic Error

Budget (DEB) is developed, which consists of a spectrum

of the error together with the closed-loop contributions of

the modelled disturbances. This DEB is used to identify the

limiting disturbances as well as how to tune the controllers to

minimize this coupling. Second, the DEB is used as weighting

in H2 synthesis to obtain a controller that minimizes the RMS

of the performance variable.
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C. Experimental results

The H2 based controller is implemented on the full Virgo

detector to compare the experimental performance. The H2

based controller ( ) outperforms the original controller

( ) in terms of Root-Mean-Square (RMS) error by a factor

three. In this talk, we will present a systematic design method

using dynamic error budgetting and H2 synthesis to derive

the presented control design and further elaborate on the

experimental results.
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High-Precision Mechatronics: from Experiment

Design to Point of Interest Control

Nic Dirkx1,2, Koen Tiels2 and Tom Oomen2,3

I. RESEARCH OVERVIEW

The performance of future high-precision mechatronics re-

lies on advanced control strategies that can cope with the

increasing system complexity, e.g., due to pronounced flexible

dynamics, unmeasurable performance variables, and a large

number of actuators and sensors. The availability of high-

quality identified dynamic models that accurately describe

these complex systems is indispensable for precision control.

This research is focused on advanced identification and control

of complex precision mechatronics.

Exploiting input directions enables effective identification [1].

Good design of identification experiments is crucial to

obtain high-quality models, especially for complex motion

systems with a large number of actuators. In classical optimal

input signal design approaches, such MIMO systems are

treated as a multiple of SIMO systems, leading to non-optimal

model quality. In [1], it is shown that optimality is achieved

by exploiting the multiplicity of the actuators, resulting in di-

rectional input signals. Optimal directional inputs significantly

reduce the uncertainty region ( ) compared to classical optimal

input design strategies ( ).
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Addressing control purpose in experiment design and identifi-

cation improves robust performance [2].

Addressing the control goal during the system identification

procedure is crucial to ensure that the model achieves high
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control performance. In [2], a framework is developed for

the identification of model sets for high-performance robust

control. The key approach is to connect the criteria for robust

control, identification, and experiment design through a spe-

cific robust-control-relevant (rcr) coprime factorization. Using

a rcr excitation spectum design ( ), a significantly tighter

model set ( ) is identified, compared to the set ( ) resulting

from classical excitation design. This enables improving robust

control performance.
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Controlling the point that matters via inferential control [3].

In many motion systems, the point of interest z cannot

be measured directly, but must be estimated from sensory

data y in combination with a dynamic system model. The

inferential aspect has large implications on the structure, the

dynamics, and the design of the controller. In addition, the re-

quired inferential controller is inherently model-based, which

emphasizes the need for addressing model uncertainty. In [3],

a robust multivariable control design framework is developed

for positioning the point of interest explicitly. Experimental

results show that the inferential controller ( ) suppresses the

disturbance ( ) significantly better than the classical control

approach ( ).
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II. SEMINAR TOPIC - EXPLOITING WAVELETS FOR FRF

IDENTIFICATION WITH MISSING SAMPLES [4]

Frequency Response Function (FRF) identification of com-

plex systems typically requires collecting a large data amount.

In practice, corrupted or missing samples in the data often

occurs, which complicates FRF identification. In this section,

a method is presented to accurately identify FRFs in the

presence of missing samples.

A. Problem formulation

The aim is to identify the FRF model G(Ω
k
) from measured

input and output data u, y

m where y

m contains missing

samples. The input-output relation is exactly represented in

the frequency domain by

Y (k) = G(Ω
k
)U(k) + T (k) + V (k),

Y

m(k) = Y (k) + Δ(k),
(1)

where U(k), Y m(k) is the Discrete Fourier Transform (DFT)

of the signals u, ym at frequency bin k, term T (k) denotes the

transient and V (k) the DFT of the measurement noise. Term

Δ(k) is the global and non-smooth perturbation due to the

missing samples, which affects Y

m(k) as shown in Fig. 1.
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Fig. 1. Y ( ) and Y
m ( ). Missing samples introduce a global perturbation.

B. Approach: Wavelet-based Local Polynomial Method

The key idea is to project out the effect of the missing

samples Δ(k) via a matrix M , such that

Y

m

M = (Y +Δ)M = YM. (2)

To achieve (2), matrix M is selected as a bank of wavelets over

a frequency grid. This enables transforming the time-domain

data y

m to the time-frequency plane, in which the effect of

the missing samples is local. This is shown in Fig. 2 for the

same data as used in Fig. 1.

Frequency [Hz]

M
a
g
n
it
u
d
e
[d
B
]

Transient

Stationary

Time [s]

Fig. 2. Time-frequency plane representation of y
m, in which the effect of

the missing samples ( ) is local.

To identify the FRF G(Ω
k
) from the time-frequency plane

data in ( ), the classical Local Polynomial Method (LPM) [5]

is extended to incorporate the wavelet-based transform. The

FRF estimate is obtained from the minimization problem

Θ̂ = argmin
Θ

‖(Y m

−KΘ)M‖
2
, (3)

where K parametrizes G and T by local polynomials as in

the LPM, and Θ denotes the estimation variables.

C. Results

The developed method is applied for the identification of

the simulated system with FRF in ( ) in the figure below

from noisy data with missing samples. The estimated FRF ( )

accurately reflects the true system. In contrast, the classical

LPM approach ( ) fails to deliver an accurate model as a

result of the missing samples.
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D. Conclusions and ongoing work

The presented wavelet-based identification approach enables

achieving accurate FRF models from data that is corrupted by

missing samples. Future work includes uncertainty quantifica-

tion, closed-loop extensions, and experimental validation.
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Multi-rate Adaptive Robust Control for Five-axis

Machine Tools

CE Chenyu1, BINH MINH NGUYEN1,2 and Hiroshi FUJIMOTO1,3

I. RESEARCH OVERVIEW

The co-author Prof.Fujimoto proposed the multi-rate perfect

tracking control in 2000. It is a powerful feedforward control

method for high precision tracking control. However, it is

a model based controller which means it can be largely

influenced by modeling error.

To solve such problems, an online RLS estimator is used.

The schematic of the machine tool, a 2DoF cradle is given

as Figure.1.

Fig. 1. The schematic of a 2DoF cradle

Such cradle like mechanism can be simplified in to a 2-inertia

system, please see Figure.2. below.

Fig. 2. (a) Schematic of a normal 2-inertia motor bench load (b) Schematic

of unbalanced load

The dynamic model in Figure.2.(a) can be written as:

T

m
= Jθ̈ +Dθ̇ (1)

It’s easy to derive the dynamic model of Figure.2.(b) as:

T

m
= Jθ̈ +Dθ̇ + Usinθ (2)

The goal is using RLS algorithm to estimate J,D and U

online.

Supporting: Masahiro MAE and Takumi HAYASHI from The University

of Tokyo. Yoshihiro ISAOKA, Yuki TERADA from DMG MORI CO., LTD.

Perfect Tracking Feedforward Control

For the PTC feedforward control, the details can be learned

from [1] [4]. The schematic of single-rate PTC is shown in

Figure.3.

Fig. 3. The schematic of single-rate PTC

The relationship between those rates are given as Figure.4.

Fig. 4. The schematic of multi-rate relations

Recursive Least-square Algorithm

The continuous time RLS was originally proposed in [3].

RLS is a online parameter estimation tool that can calculate

the system parameters-θ from the system input(s) u, and the

system output(s) ϕ.

The discrete-time algorithm is represented below.

θ̂[k] = θ̂[k − 1] + Proj

θ̂

{K[k](u[k]− ϕ

T [k])θ̂[k − 1]} (3)

Where P and K are updated in every step, the update

equation is given as:

K[k] =
P [k − 1]ϕ[k]

λ+ ϕ

T [k]P [k − 1]ϕ[k]

P [k] =
(I −K[k]ϕT [k])P [k − 1]

λ

(4)

The projection algorithm which guarantees that the estimated

parameters do not break the designated limits, are given as

below:

Proj

θ̂

(H
j
) =

⎧⎪⎨⎪⎩
0, if θ̂

j
≥ θ

jmax
& H

j
≥ 0

0, if θ̂

j
≤ θ

jmin
& H

j
≤ 0

H

j
, Otherwise

(5)
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Fig. 5. Schematic of Multi-rate Adaptive Robust Control

II. SEMINAR TOPIC - Multi-rate Adaptive Robust Control

A. Perfect tracking Controller Design

To build a PTC controller, we needs the system model.

From equation ( ), the continuous system state space model

can be obtained as [2]:

ẋ = A

c
x+B

c
(u− Usin(θ))

y = C

c
x

(6)

The discrete model of the unbalanced torque would be:

x[k + 1] = A

d
x[k] +B

d
(u[k]− Usin(θ[k]))

y[k] = C

d
x[k]

(7)

Where the discrete state space can be derivate as:

A

d
= e

AcTy
, B

d
=

∫
Ty

0

e

Acτ
B

c
dτ, C

d
= C

c
(8)

Beyond that, the Multi-rate state space is given as:

x[i+ 1] = Ax[i] +B(u[i]− Usin(θ[k]))

y[i] = Cx[i] +D(u[i]− Usin(θ[k]))
(9)

The state space matrices A,B,C,D are given in [4] [1].

The estimated system parameters coming from the RLS with

projection will be used to update the PTC feed forward

controller.

B. Recursive Least-square

The RLS convergence are validated through simulations:

Fig. 6. The schematic of multi-rate relations
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Identification and Control for Periodic and

Parameter-Varying Systems

Max van Haren1, Lennart Blanken1,2 and Tom Oomen1,3

I. RESEARCH OVERVIEW

Increasing performance requirements for control in mecha-

tronics leads to a situation where complex effects have to

modeled, identified and taken into account for control. For

example, consider the addition of sensors, e.g., a camera, that

introduces multirate sampling, and flexible dynamics that typ-

ically introduces position-dependent effects. Examples of such

systems are vision-in-the-loop systems, wafer scanners and

belt-driven systems. For these type of systems, performance

evaluation, control and identification methods are lacking.

Lifting Enables Direct Evaluation of Multirate Closed-Loop

Performance [1].

For multirate or sampled-data control, it is desirable to

directly evaluate the closed-loop performance, that is not

trivial due to the periodic effects introduced by the down-

and upsampler. In [1], the performance variables are lifted,

such that an LTI system is recovered and can be used for

performance evaluation.
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Polynomial Estimates Facilitate the Identification of Slow-

Sampled Systems Above the Nyquist Frequency [2].

Frequency-Response Function (FRF) identification for slow-

sampled systems is enabled through approximating the system

in multiple frequency bands by a polynomial, resulting in an

identified FRF ( ) above the Nyquist frequency ( ) .

Additionally, variance estimates ( ) are included.
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Control design for multirate and sampled-data applications.

The goal of this research topic is to design controllers for

systems that have multirate sampling, and to improve inter-

sample behavior of sampled-data systems. Ongoing research

is aimed at designing controllers that directly account for the

closed-loop performance of multirate systems discussed in

[1], and improving intersample behavior by utilizing multirate

state-tracking.

P

SH K

d

Kernel-Regularized Identification Enables Feedforward for

Position-Dependent Systems [3].

Feedforward for LPV motion systems is defined by using

basis functions and kernel regularized system identification,

resulting in a model-free learning approach. Dependency on

the derivatives of the scheduling is explicitly accounted for

motion systems through a change of variables. This topic is

presented in more detail in Section II.
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Iterative learning techniques for LPV systems.

For Linear-Parameter Varying (LPV) systems, it is desirable

to incorporate LPV feedforward into iterative learning meth-

ods. The aim in this topic is to add LPV feedforward parame-

ters into the iterative framework, and be applied to mechatronic

systems. Ongoing research is aimed at convergence results and

hyperparameter optimization.
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II. SEMINAR TOPIC - KERNEL REGULARIZED LPV

FEEDFORWARD: APPLIED TO MOTION SYSTEMS

In this section, a framework is developed for the design and

identification of LPV feedforward for motion systems [3].

A. Problem Formulation

The aim in this section is to create LPV feedforward

controller F

LPV
to minimize the tracking error e = r − y,

as seen in Fig. 1.

FLPV

C GLPV

−

r e

uff

u
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ρ

ρ

k(ρ)

m
1

m
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y

u

Fig. 1. Left: Feedforward structure considered. Right: Example LPV motion
system.

The class of LPV motion systems are statically dependent

on the scheduling sequence and have representation

G

LPV
:
∑

na

i=0
a

i
(ρ) d

i

dt
i y =
∑

nb

j=0
b

j
(ρ) d

j

dt
j

∫∫
u dt

2
. (1)

The inverse dynamics, i.e., the dynamics mapping y to u, are

dynamically dependent on ρ, due to the second integral.

Example 1. The system in Fig. 1 has inverse dynamics

u =
d

2

dt

2

((
m2m1

k(ρ)

d

2

dt

2
+ (m2 +m1)

)
y

)
,

= (m1+m2)ÿ+
m1m2

k(ρ)

....
y −

2m1m2ρ̇k
′(ρ)

k

2(ρ)

...
y +m1m2

2ρ̇2 k

′2

(ρ)

k(ρ)
−ρ̈k

′(ρ)−ρ̇

2
k

′′(ρ)

k

2(ρ)
ÿ

having dynamic dependency, i.e., dependency on the derivative

of the scheduling, ρ̇ and ρ̈. �

B. Approach

The developed approach utilizes basis functions and LPV

feedforward parameter functions and is defined as

F

LPV
:

{
w

ff
=
∑

nθ

i=1
θ

i
(ρ)ψ

i

(
d

dt

)
r.

u

ff
= d

2

dt
2
w

ff

(2)

Example 2. The system in Fig. 1 with inverse dynamics

shown in Example 1 has optimal w
ff

as

w

ff
=

∫∫
u

ff
dt

2 =

(
m2m1

k(ρ)

d

2

dt

2
+ (m2 +m1)

)
y, (3)

that is only statically dependent on ρ, but results in optimal

feedforward u

ff
including dynamic dependency. �

The LPV parameter functions θ
i
(ρ) are learned using data and

a kernel regularized cost function [4], i.e.,

Θ̂ = argmin
Θ

‖w̄ − ΦΘ‖
2 + γ‖Θ‖

2

H, (4)

where more details are found in [3]. The regularization

‖Θ‖
2

H = Θ�
K

−1Θ specifies high-level properties of the feed-

forward parameters using the kernel K, e.g., smoothness or

periodicity. The applied feedforward force to the system u

ff
,

see (2), leads to optimal polynomial feedforward, including

dynamic dependency for LPV motion systems.

C. Results

The developed framework is validated on the system in

Fig. 1 where k(ρ) = c/(ρ(L−ρ)), with constants c and L. The

estimated parameter m1m2

k(ρ)
is seen in Fig. 2. The performance

is compared to traditional LTI feedforward in Fig. 3.
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The tracking error is significantly reduced from ‖e‖2 =
4.2 · 10−6 m to 5.8 · 10−8 m.

III. CONCLUSIONS

LPV feedforward for a class of motion systems is devel-

oped, where the feedforward controller is directly identified

based on input-output data, including dynamic dependency.

Significant performance increase is observed for an LPV

motion system. Ongoing research is aimed at experimental

validation and the addition of iterative learning methods.
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Akira Hirata1, Ryosuke Shibatsuji1, Tatsuya Yamaguchi1, and Wataru Ohnishi2

I. RESEARCH OVERVIEW

Semiconductor technology is the basis for the affluence 

and convenience of the modern world and plays an important 

role in a low-carbon society. As the shrinking of circuit critical 

dimensions and the introduction of 3-dimensional integrated 

circuits continues, the manufacturing process should meet 

higher accuracy, productivity and yield. 

Among various manufacturing processes, semiconductor 

thermal processing includes several essential steps, such as 

oxidation, annealing, diffusion, and chemical vapor 

deposition. There are mainly two equipment types for this 

process: batch type and single-wafer type. This section 

introduces the fast, high precision, and energy-friendly 

temperature control in the batch type vertical furnace [1]. The 

other section will discuss the application of iterative learning 

control (ILC) in the single-wafer type equipment. 

The vertical furnaces must achieve even faster and more 

precise temperature control due to the demand for ever 

reducing the minimum feature size or critical dimension in 

semiconductor chips. Furthermore, not only these control 

performances, but also low energy consumption is required. 

The vertical furnace is equipped with heaters and coolers, 

as shown in Fig. 1. For the temperature measurement, it has 

several thermocouples called inner TCs in the process tube 

near the wafers. In addition, the vertical furnace is divided into 

6 zones. However, the average temperature of the inner TCs is 

used as the temperature output in the paper since the paper 

focuses on the integration of the heater and the cooler. 

Similarly, for the heaters, all zones are set to have the same 

values of heater power. This is also the case for coolers. 

Therefore, the paper treated the system as a two-input, one-

output system with the average power of the heaters and 

coolers as input and the average inner temperature as output. 

1Akira Hirata, Ryosuke Shibatsuji and Tatsuya Yamaguchi are with Tokyo 

Electron Technology Solutions Ltd., Japan, corresponding e-mail: 

. 
2 Wataru Ohnishi is with The University of Tokyo, Japan.

The frequency response functions (FRFs) of the plant were 

measured using frequency domain system identification with 

zippered multisine signal. The FRFs indicate that the heater 

and the cooler characteristics are similar, except for the phase 

reversal and gain offset. The paper presents the heater-cooler 

integration method. The integrated control input  generates 

the heater power  and the cooler power : 

where  indicates the constant gain that brings the FRF of 

the cooler closer to the FRF of the heater as shown in Fig. 2. 

Therefore, the heater-cooler integrated controlled system is 

obtained as follows 

A two-degree of freedom controller was designed to 

control the system . The experimental results are shown 

in Fig. 3. The proposed control achieves both high control 

performance and low power consumption. 

Fig. 1. Thermal plant configuration of the semiconductor 

vertical furnace. 

Fig. 2. Frequency response function and second-order 

model after the heater-cooler integration. 

(a) LQG control.       (b) Proposed control. 

Fig. 3. Experimental results. 
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II. SEMINAR TOPIC APPLICATION OF ITERATIVE LEARNING 

CONTROL TO TEMPERATURE CONTROL FOR SINGLE WAFER 

DEPOSITION SYSTEM

A single wafer deposition system has a stage heater in a 

chamber. A wafer near room temperature is brought in from 

outside the chamber and placed on the stage. This work 

considers the stage heater which is single-input single-output 

system with a heater power as input and a stage heater 

temperature as output. The temperature is measured by a 

thermocouple. 

A. Purpose of This Work 

This work aims to reject the temperature disturbance during 

the wafer loading process. During loading process, the stage 

temperature fluctuates greatly. This can be treated as a 

disturbance for the temperature control. Due to the 

repeatability of the disturbance, an ILC [2] could be applied 

for the disturbance rejection. 

B. Design of ILC 

An ILC input signal  is added to the conventional feedback 

control system as shown in Fig. 4. Then, the update algorithm 

of a frequency-domain ILC [3] is given as 

, (1) 

where,  and  are a learning filter and robustness filter, 

respectively. 

In this work, the FRF of  was measured directly by using 

a closed-loop system identification, where  is the sensitivity 

function . A parametric model  was determined 

by the FRF of . Fig. 5 shows the FRF of  and . Then, 

the learning filter  was designed as  by using the 

ZPETC algorithm. The robustness filter  was designed to 

satisfy . 

C. Experiments 

Experiments on the stage heater temperature control using 

ILC were conducted in the existing single wafer deposition 

system. Fig. 6 shows the 2-norm of the error. The error 

decreased significantly, and the error converged even if the 

iteration was continued.  

III. CONCLUSION

This research has contributed to the development of 

temperature control in semiconductor thermal process. For the 

batch type, proposed heater and cooler integration has been 

proved experimentally to reach fast and high-precision 

temperature control with efficient energy use. For the single-

wafer type, ILC has been applied to compensate repeatable 

temperature disturbance, thus improve the disturbance 

rejection performance. Future works will continue to reach 

faster and more precise temperature control of both batch and 

single-wafer type thermal processing equipment to contribute 

to the development of semiconductor manufacturing sector. 
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Fig. 6. Experimental results. 

Fig. 5. Frequency response . 

Fig. 4. Control system structure. 
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Wind vector estimation considering the difference

of propeller characteristics for fully actuated drone

Manto Kamiya1, Sakahisa Nagai1, and Hiroshi Fujimoto1

I. RESEARCH OVERVIEW

Recently, business which utilizes multi-rotor Unmanned

Aerial Vehicles (UAV) is rapidly developing. Conventionally,

multi-rotor UAVs have been mainly used to take aerial images

or to carry packages with one multi-rotor UAV. On the other

hand, the demand for applications of multi-rotor UAVs to

interact with the surrounding environment will increase in the

future. For example, it is considered to use multi-rotor UAVs

for cooperative payload transportation or contact inspection on

buildings. When multi-rotor UAVs conduct such missions, it

is effective to implement force control. One of the challenges

to conduct force control for drones is the separation of wind

disturbance from total disturbance.

Topic 1 Fully Actuated Drone

A fully actuated multi-rotor UAV is a drone whose pro-

pellers are oriented in different directions. It is currently

receiving interest as one of the suitable UAVs for high-

precision applications including force control. As shown in

Fig. 1, mounting propellers in different directions allows the

drones to control their six DOF motion separately. A fully

actuated drone is expected to be used in situations where force

control is required, such as contact inspections.

Fig. 1. Fully actuated drone.

Topic 2 Wind Vector Estimation of Multi-rotor UAV

One of the significant difficulties of force control for out-

door multi-rotor UAVs is wind disturbance. The force caused

by a wind disturbance should be separated from others to

recognize non-wind force accurately and to implement force

control. Hence, it is important to estimate a wind vector that

flows into the multi-rotor UAV.

Some methods were proposed to date to estimate wind

vectors with multi-rotor UAVs as follows:

1) Using external wrench estimation with an Inertial Mea-

surement Unit (IMU) [1]

1 The authors are with Graduate School of Frontier Science, The University

of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.

2) Wind vector measurement by using an anemometer [2]

3) Considering dynamics of motors and propellers [3]

Method 1 and method 2 have difficulty in separating force

caused by wind and non-wind force because the external force

applied to the body frame of multi-rotor UAVs is basically

considered only as a wind disturbance in those methods.

Method 3 which considers the dynamics of the motor and

propeller has the potential to estimate wind vector and to

separate force caused by wind from other force. Reference [3]

is a previous work of wind vector estimation for force control

of drones which considers motor and propeller dynamics. Its

method attempts to estimate three-dimensional wind velocity

by combining physical models and machine learning.

(a) Method 1 (b) Method 2

(c) Method 3

Fig. 2. Wind vector estimation methods of multi rotor UAV.

Topic 3 Wind vector estimation method for fully actuated drone

Reference [4] is our previous method. It proposed a simple

wind vector estimation method only by utilizing the tilted

propellers of a fully actuated drone and physical-based model.

The study showed the possibility of simple wind vector

estimation with the two propellers bench test in a wind tunnel.

Fig. 3. Configuration of propellers of fully actuated drone.
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II. SEMINAR TOPIC - Wind vector estimation

The new wind vector estimation method for fully actuated

drones which considers the difference of propeller character-

istics is proposed. The proposed method requires a degree of

freedom in the direction of propellers. As shown in Fig. 3 and

4, the case of two propellers is considered in this paper to

simplify the situation.
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Fig. 4. Wind vector estimator.

A. Airflow Velocity Estimation

In the first step, the observer-based Vp estimation method is

used. Counter torque Q of propeller is estimated by observer.

Q is described with wind velocity Vp as follows:

Q = C

Q
(J)ρn2

D

5

p . (1)

Where J = Vp/Dpn, ρ is air density and Dp is the propeller

diameter. C
Q

is coefficient of torque. Therefore, Vp of each

two propellers is designated by estimated Q as follows:

V̂p = nDpC
−1

Q

(
Q̂

ρn

2
D

5
p

)
. (2)

Vp1 is Vp of propeller 1 and Vp2 is Vp of propeller 2.

B. Relationship Between Airflow Velocity Flowing in Pro-

pellers and Wind Vector

It is considered that the case where V flows in at an angle

of a to the propeller. The model function of angular sensitivity

of Vp to V is experimentally obtained as follows:

Vp

V

= cos(wa+ ψ), (3)

where w and ψ are fitting parameters.

C. Proposed Method: Wind Vector Estimation Considering

Non-linear Simultaneous Equation

The proposed method considers the difference of the an-

gular sensitivity function of each propeller. The optimization

problem is defined as follows:

min
−π

2
≤α≤π

2
,V ∈R

F (α, V ). (4)

Where F (α, V ) is defined as follows:

F (α, V ) = e

2

1
+ e

2

2
+ f

b
, (5)

e1 = V̂

p1 − V cos
(
w1

(
σ

2
+ α

)
+ ψ1

)
, (6)

e2 = V̂

p2 − V cos
(
w2

(
σ

2
− α

)
+ ψ2

)
, (7)

Note that f
b

is a barrier function to limit the searching area

of α. The meaning of this optimization is to search V and α

minimizing the L2 norm of the error between the calculation

value from the model and the estimation value of Vp. Estimated

V and α are updated based on the steepest descent method.

D. Experimental Results of Wind Vector Estimation
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Fig. 5. Result of wind vector estimation.

From Fig. 5, it is shown that wind vector estimation with

step airflow angle is achieved. Focusing on the result of Fig.

5(a), the estimation error of the proposed method is smaller

than the conventional method. The reason of the result is

considered that the proposed method takes into account the

difference of the angular sensitivity function of each propeller.

E. Conclusion

In this study, a wind vector estimation method for large in-

dustrial fully actuated drones which can improve the accuracy

of the conventional method is proposed. Note that the wind

vector estimation method in this paper still has difficulty in

estimating wind vectors at high rotational speed as the same

in [4].
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Precision positioning with transverse flux linear

synchronous motors

Mamoru Katayama1, Wataru Ohnishi1,2, Takafumi Koseki1,3, Houng-Joong Kim4 and Koichi Sakata5

I. SEMINAR TOPIC - PROPOSAL OF A HIGH

ACCELERATION CONTACTLESS PRECISION POSITIONING

STAGE WITH A PAIR OF TRANSVERSE FLUX LINEAR

SYNCHRONOUS MOTORS

A. Introduction

(a) Conventional stage (coreless motors + VCMs)

(b) Proposed stage (only core-equipped motors)

Fig. 1: Comparison between a conventional stage and the

proposed stage

Precision positioning stages are indispensable equipment for

manufacturing semiconductor integrated circuits or flat panel

displays. In recent years, linear motors are widely used for

driving those stages because of their ability to provide non-

contact drive. Also, the self-weight compensation mechanism

includes air guides that dramatically reduce the effects of fric-

1 The authors are with Department of Electrical Engineer-

ing, the University of Tokyo, Japan, corresponding e-mail:
m.katayama@ctl.t.u-tokyo.ac.jp.

2 Wataru Ohnishi is also with Department of Electrical Engineering, the

University of Tokyo, Japan.
3 Takafumi Koseki is also with Department of Electrical Engineering, the

University of Tokyo, Japan.
4 Houng-Joong Kim is with KOVERY.
5 Koichi Sakata is with Nikon.

tion and floor vibration by levitating the stage in a contactless

manner [1].

Conventionally, coreless motors are used in longitudinal

direction and VCMs in lateral direction for precision posi-

tioning stages as seen in Figure 1(a), but core-equipped motors

are more suitable for realizing higher acceleration drive and

decreasing the number of actuaters. However, due to the detent

force and the nonlinearity of the lateral magnetic attractive

force generated by the core-equipped motor, they will cause

deterioration in positioning performance. So, it is necessary to

redesign the motor, review the stage mechanism, and develop

new control methods.

B. Structure of the Proposed Stage

Fig. 2: Model of the proposed stage

The proposed stage uses only core-equipped linear motors

to control the motion in three degrees of freedom (x, y, θ
z
):

F

x
is generated by the q-axis current of the motors, and F

y

is generated by the d-axis current, which is the difference of

the lateral attractive forces by the linear motors on both sides.

F

θ
is mainly generated by the difference of the thrust forces

by the linear motors on both sides [2].
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C. Structure of the transverse flux linear synchronous motor

In order to stabilize the support of the stage in the z

direction, the force exerted by linear motors on the stage must

be sufficiently reduced. KOVERY’s double-sided transverse

flux linear synchronous motor with cores only on the armature

side [3] are designed to reduce magnetic attractive forces in

the y and the z direction [4], and detent force in the x direction

[5], so this motor was adopted on the proposed stage.

Fig. 3: Arrangement of motor armature cores and field perma-

nent magnets

D. Redesigning of the Motor

With the current motor geometry, the lateral magnetic at-

tractive force changes nonlinearly when the stage is displaced

in the y direction. Therefore, we proposed a new motor

geometry with the middle core of the conventional motor being

shortened by 5mm, and optimized the linearity by focusing

on the length of the cores on both sides. As a result, the most

linearized motor was obtained when l

e
= −1mm.

(a) Definition of the length of change of the middle core (lc mm)
and the bilateral cores (le mm)

(b) Standard deviation showing the variation from the approximate
straight line

Fig. 4: Optimization of Proposed Motors
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Study on Estimation and Adjustment of Lateral

Misalignment in Dynamic Wireless Power Transfer

with Steering Actuator and Yaw Moment

Tomoaki Koishi1, Binh-Minh Nguyen1, Osamu Shimizu1, Shota Yamada1 and Hiroshi Fujimoto1

I. RESEARCH OVERVIEW

Recently, electric vehicles (EVs) have been gaining attention

due to growing concerns about environmental issues such as

global warming and air pollution caused by exhaust gas. How-

ever, the long charging time and the short cruising distance

have hindered the widespread of EVs. Dynamic wireless power

transfer (DWPT) has been developed to address this problem.

Receiver coils are attached to EVs and run over transmitter

coils embedded in the ground, which transfer electric power

to EVs through magnetic resonance. To realize the DWPT, it

is necessary to deal with the efficiency reduction caused by

a lateral misalignment between the transmitter and receiver

coils. It is well known that the lateral misalignment degrades

the coupling coefficient, thereby decreasing the power transfer

efficiency.

Transmitter coil

1. Estimate the lateral misalignment 2. Eliminate the lateral misalignment

Lateral position estimation using WPT information [1].

A method is proposed to estimate the lateral misalignment

of the receiver coil from the mean of the DC link current

in a one-time power transfer. The method assumes that the

parameters of the transmitter and receiver coils are given

and uses the following approximation model using hyperbolic

function and constants a, b, c:

Y

coil
=

1

b

arccosh

(
I2dc − c

a

)
, (1)

where I2dc indicates the mean of the DC link current in the

current-mean area, where the coupling coefficient is strong.

The estimation error of this method is relatively large with a

small misalignment. However, it does not affect the effective-

ness since the mutual inductance is kept high with a small

misalignment.

Current-mean area

Lateral position estimation and control for vehicle [2].

This study is to further apply the method to a real ex-

perimental vehicle. To support the drive, it is not enough

to compensate only for the lateral misalignment. To simul-

taneously control the lateral misalignment and yaw angle, this

paper shows a new method to fuse the DC link current mea-

surement with the onboard inertial measurement unit (IMU).

The method uses the vehicle dynamics model to estimate the

lateral misalignment and the yaw angle from the outputs of the

sensors. Furthermore, the lateral misalignment and the yaw

angle are controlled by integrating the rear in-wheel-motors

and the front active steering mechanisms.
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Neural networks for feedforward control

Johan Kon1, Dennis Bruijnen2, Jeroen van de Wijdeven3, Marcel Heertjes1,3, Tom Oomen1,4

I. RESEARCH OVERVIEW

Hard-to-model dynamics limit the performance of current

feedforward approaches as it is hard to describe these dy-

namics as a mathematical function. For example, consider

the inability of as polynomial basis function feedforward

to compensate nonlinear friction characteristics. This work

focuses on developing more advanced feedforward controllers

based on neural networks to instead learn these dynamics from

data. Relevant topics within this research are i) how to combine

neural networks with prior knowledge in the form of models,

ii) how to guarantee stability, and iii) how to obtain consistent

estimates when working with closed-loop data.

Everything that can be explained by a physical model, should

be explained by this model [1], [2].

When employing neural networks for feedforward, it is

common practice to ignore all prior knowledge about the

systems dynamics. However, physical models are usually a

very efficient representation of the dynamics, such that a

purely neural network approach can introduce unnecessarily

big networks. In [1] and [2], a parallel physical-model and

neural-network feedforward controller is developed to utilize

prior knowledge and learn unmodelled dynamics simultane-

ously. Through regularization, it is ensured that the neural

network does not learn anything that can be captured by

the physical model. The figure shows that the combined

feedforward of the parallel combination ( ) can learn the

required input ( ). However, the neural network ( ) can

learn parts of the physical model ( ) without changing the

combined feedforward (right). The proposed regularization

ensures that the contributions of the physical model and neural

network are complementary (left).
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LPV feedforward control for position dependent zeros [3]

Position-dependent dynamics are omnipresent in mecha-

tronic systems, possibly necessitating an LPV feedforward

controller with ’shifting poles’ to compensate for the shifting

antiresonances of the position-dependent system. To learn any

position-dependent function, the dependency of the controller

coefficients on the scheduling variable is learned through a

parallel physical model and neural network. Analytical gra-

dient expressions combined with a second order solver allow

for significantly faster optimization compared to a standard

implementation in an automatic differentiation framework.

The figure shows an example system with a resonance that

has a position-varying damping (left). The LPV feedforward

controller ( ) is able to generate the required input for

perfect tracking ( ) up to the approximation capabilities

of the neural network, whereas a rational transfer function

feedforward controller ( ) cannot capture the effects of the

position-dependent resonance. Current research is aimed at

guaranteeing that the LPV feedforward controller is stable.

Instrumental variables for consistent estimation [4].

Input-output data for learning a feedforward controller

is often obtained from a closed-loop experiment for safety

concerns. Consequently, unmeasured disturbances entering the

control loop end up in both input and output, creating correla-

tions that result in inconsistent parameter estimates, degrading

control performance. To obtain consistent parameter estimates,

an instrumental variable neural network optimization criterion

is developed. The figure shows the validation error, i.e., the

norm of the predicted input and the actual input, for both

a standard least-square criterion ( ) and the proposed IVNN

criterion ( ). This validation error is shown for multiple noise

realizations in the input output data (crosses and circles) and

for a range of noise levels. It can clearly be seen that the bias

worsens the quality of the LS estimate.
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II. SEMINAR TOPIC - LEARNING FOR PRECISION MOTION

OF AN INTERVENTIONAL X-RAY SYSTEM

This section illustrates research topic 1, i.e., parallel phys-

ical model and neural network feedforward control, through

an experimental case study on an interventional X-ray (IX).

A. Problem Formulation

IXs are a key technology in healthcare that improve treat-

ment quality through visualization of patient tissue. To guar-

antee both high imaging quality as well as patient and operator

safety, accurate feedforward control is essential during opera-

tion of an IX. However, the mechanical design, constrained

by the use around medical personnel, introduces nonlinear

dynamics such as configuration-dependent cable forces ( )

and nonlinear friction characteristics that are dependent on the

normal force on the rollers in the guidance ( ). These hard-

to-model dynamics are only qualitatively known, and thus the

aim is to learn them from data using neural networks.

θ

Roll

Detector

X-ray source

Guidance

Cable

Fig. 1. Interventional X-ray system positioning the X-ray source and detector
through rotating 3 axes, among which the roll axis with angle θ.

B. Feedforward Parameterization

To compensate the hard-to-model dynamics, the feedfor-

ward controller is parametrized as a parallel combination

of a physical model and neural network g

φ
such that the

feedforward f for reference θ

d
is given by

f(θ
d
(k)) = Mθ̈

d
(k) +H(θ

d
) + g

φ
(T (θ

d
(k)),

with d the viscous damping coefficient and

M = m(y2 + z

2) + J

xx
∈ R≥0,

H(θ) = mg(y cos(θ)− z sin(θ)) cos(ζ) ∈ R,

the inertia and gravity contribution. Coordinates y, z represent

the offset of the center of mass with respect to the point of

rotation, and ζ the known orientation of the roll axis out of

the vertical plane. The neural network g

φ
is given by

g

φ
(x) = W

L

σ(WL−1
σ(· · ·σ(W 0

x+ b

0) · · ·+ b

L−1) + b

L

,

with σ an elementwise activation function, φ = {W
l

, b

l

}
L

l=0

weight and bias matrices. g
φ

acts on a physics-guided input

T (θ
d
(k)) =

[
θ

d
(k) θ̇

d
(k) θ̈

d
(k) relay(θ

d
(k))
]
T

,

which encodes the prior knowledge that the required feedfor-

ward depends not only on position, but also on velocity, and

the history of the direction for static friction.

The parameters m, y, z, φ are learned from input-output data

{u(k), y(k)}N
k=1

through inverse system identification, i.e., by

regressing the feedforward output f(y(k)) on u(k) as

min
m,y,z,φ

=
∑

N

k=1

(u(k)− f(y(k)))2 +R(φ).

R(φ) represents orthogonal projection-based regularization [1]

to ensure that g
φ

does not learn modeled effects, such that the

physical model remains interpretable.

C. Results

The feedforward controller is validated experimentally on

the IX setup. Fig. 2 shows the resulting tracking errors. The

proposed feedforward controller ( ) compensates almost all

dynamics, resulting in a tracking error of a few encoder counts.

In contrast, the physical-model-based feedforward controller

( ) improves upon the feedback only case ( ), but still

contains predictable errors from uncompensated dynamics.

Overall, the tracking error is reduced from 0.095 to 0.020 deg

in mean absolute sense by the inclusion of a neural network.

Fig. 2. Error signals for proposed ( ) and physical-model-based ( )

feedforward controller compared to the feedback only case ( ) with scaled

velocity reference ( ).
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Data-Driven Auto-Tuning with Performance and

Interpretability in Industrial Mechatronic Systems

Masahiro Mae1, Wataru Ohnishi1 and Hiroshi Fujimoto1

I. RESEARCH OVERVIEW

Increasing demand for industrial high-precision mechatronic

systems leads to the complexity of multi-modal dynamics

and multivariable tuning parameters. The aim is to develop

a data-driven auto-tuning approach for industrial mechatronic

systems. Data-driven auto-tuning enables performance im-

provement without a heuristic tuning process that is time-

consuming in such multivariable systems and mass-produced

products. The fully data-driven approach has a challenge in

interpretability and it is not suitable for industrial mechatronic

systems because the robust performance is not guaranteed and

the interaction with on-site engineers is difficult. In this paper,

the physics-guided data-driven auto-tuning methods to achieve

both performance and interpretability are briefly introduced.

Feedforward Control using Sampled-Data Differentiator [1]

Typical multi-modal motion systems such as scanners,

machine tools, and industrial robots are low-order modeled

as a two-inertia system. In two-inertia systems, inertia with

input and output is connected flexibly. In the feedforward

controller design of the two-inertia system, acceleration and

snap compensations are effective for fast and precise motion

control and it can be designed easily by linear optimization.

u y

θa

θs

Ψs[k]
+

+ uff [k]Ψa[k]
ξ

2

ξ
4

r(t)

F (θ)

In [1], considering the sampled-data dynamics in actual

implementation, the design of the sampled-data differentiator

ξ can improve the tracking performance of the feedforward

controller. The differentiator design using a multirate state

tracking technique ( ) outperforms that using conventional

backward differentiation ( ) in an experimental validation.
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Feedback Control with Data-Driven Loop-Shaping [2], [3]

The structured modeling of the disturbances and frequency

response data-based optimization enables feedback controller

design with both performance and interpretability. The fre-

quency response data-based design has several advantages in

complex mechatronic systems because the parametric model-

ing is not necessary and the model variation can be handled

directly with data sets. The approach is successfully applied

in LCD scanners [2] and Hard Disk Drives (HDD) [3].

In [2], the rational peak filter is designed for a six-

degrees-of-freedom high-precision scan stage. The interaction

of the multi-input multi-output (MIMO) system is considered

as MIMO robust stability condition ( ) and the feedback

controller is successfully designed with robust stability.
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In [3], the multiple resonant filters are structurally parame-

terized corresponding to disturbance frequencies. To deal with

gain and phase stability conditions in optimization constraints,

the high-gained feedback controller is successfully designed

with robust stability and robust performance.
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II. FREQUENCY RESPONSE DATA-BASED RESONANT

FILTER DESIGN APPLIED TO HARD DISK DRIVES

In this section, the approach of frequency response data-

based multiple resonant filter design [3] is presented.

A. Problem formulation

To improve track-following performance, the magnetic head

of the HDD is controlled by a dual-stage actuator with a Voice

Coil Motor (VCM) and a PieZoelecTric (PZT) actuator, and it

becomes a dual input single output system, as shown in Fig. 1.

PZT Actuator

Magnetic Head

Sector

User Data

Position Data

Spindle MotorDisk

VCM

VCM
Controller

PZT
Controller

r

e +

−

Fig. 1. Hard disk drive with a dual-stage actuator.

To minimize error e, the system and pre-designed feedback

controllers are used as open-loop frequency response data G,

and multiple resonant filters F are additionally designed on

each actuator to reject disturbances d, as shown in Fig. 2.
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ycp
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+

+
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Gp
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Im

yp

Fig. 2. Block diagram of a hard disk drive with a dual-stage actuator.

B. Approach

The designed resonant filter consists of the sum of the

resonant modes and phase compensators that are defined as

F (s) =
κs

2 + κψs

s

2 + 2ζ
r
ω

r
s+ ω

2
r

. (1)

To minimize the error with stroke limitation and robust sta-

bility conditions as shown in Fig. 3, the optimization problem

of the multiple resonant filters is formulated as

minimize
ρ

max
∀
kc,

∀
kf

|e
kc
(jω

kf
)| (2a)

subject to
∀
kc,

∀
kf

|y
p,kc

(jω
kf
)| ≤ y

p,max (2b)

w

s
(jω

kf
)|S

kc
(jω

kf
,ρ)| ≤ 1 (2c)

−

π

2
≤ ∠
(
1 + L

kc
(jω

kf
,ρ)
)
− ∠
(
1 +G

kc
(jω

kf
)
)
≤

π

2
, (2d)

where w

s
is the weighting of the sensitivity function, S is the

sensitivity function, L is the open-loop frequency response.

Using sequential linearization, the optimization problem can

be solved by iterative convex optimization, and the optimiza-

tion result is shown in Fig. 4.
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Fig. 3. Vector locus using a res-

onant filter with modulus margin

and phase stabilization in Nyquist

diagram.
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Fig. 4. Scaled inverse disturbance
spectrum ( ) and sensitivity function

without ( ) and with ( ) the opti-
mized resonant filters.

C. Results

As shown in Fig. 5, the improvement of the track-following

performance with the optimized resonant filters is validated

in time-domain simulation using a dual-stage actuator HDD

benchmark problem.
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Fig. 5. Time series of head positions in dual-stage actuator HDD benchmark

simulation without (left) and with (right) the optimized resonant filters.

III. CONCLUSION

The data-driven auto-tuning approach with performance and

interpretability is developed for the feedforward and feedback

controller design that is suitable for the applications in indus-

trial mechatronic systems. Ongoing researches focus on the

usage of both frequency-domain and time-domain data and

the optimal design of the controller structure.
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Identification, Calibration and Control for Motor

Commutation

Max van Meer1, Gert Witvoet1,2 and Tom Oomen1,3

I. RESEARCH OVERVIEW

Switched Reluctance Motors (SRMs) [1] enable power-

efficient actuation with mechanically simple designs. These

actuators exhibit a highly nonlinear relationship between

torque, coil currents, and rotor position, challenging position

feedback control. In this abstract, some key challenges in the

identification, control, and calibration of SRMs are addressed.

Optimal Commutation for Switched Reluctance Motors [2]

To allow for LTI feedback control of SRMs, the nonlinear

dynamics are linearized by designing a commutation function

that produces multiple coil currents based on desired torque

and the rotor position. In [2], a novel approach to commutation

function design through convex optimization is developed,

yielding a high degree of control over and interpretability of

the current waveforms.
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Nonlinear Bayesian Identification for Motor Commutation

The commutation function design of SRMs relies on a

model of the nonlinear torque-current-angle relationship of

the system in question. This relationship is identified using

Bayesian estimation. Experimental results confirm that a good

model is obtained, even without torque sensors or extensive

knowledge of the nonlinear structure. Moreover, an expression

of the model variance is obtained, quantifying the uncertainty

that results from, e.g., tooth-by-tooth variations and manufac-

turing tolerances.
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Robust Commutation Function Design

When an uncertain model of the torque-current-angle re-

lationship of an SRM is available, this uncertainty can be

explicitly taken into account in the design of commutation

functions. By exploiting the optimization-based commutation

design framework from [2] with a cost function that penalizes

the expected value of torque ripple given the uncertain model,

commutation functions are obtained that are robust to tooth-

by-tooth variations and other modeling errors.

coil 1 coil 2 coil 3 unmodeled

manufacturing defects

lead to incorrect

switching

rotor

Cascaded Calibration of Mechatronic Systems via Bayesian

Inference [3]

Actuators that feature a teethed rotor made from a soft

magnetic material, such as SRMs, lend themselves well to

Hall-effect position sensors, as these rely on the rotor teeth

to yield a position measurement. However, these sensors

exhibit significant position-dependent inaccuracies and hence

require calibration on an external test bench. The next page

summarizes a novel approach to cascaded position sensor

calibration that also takes into account the calibration of the

test bench to achieve more accurate calibration.

Sensor 1

Least accurate sensor

Sensor i Sensor n
calibrated on calibrated on

Most accurate sensor

. . . . . .
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II. SEMINAR TOPIC - CASCADED CALIBRATION VIA

BAYESIAN INFERENCE [3]

A. Background

The objective is to model the relationship between a low-

cost, relatively inaccurate sensor (S1) and a highly accurate

manual instrument (S3). To achieve this, a test bed is em-

ployed, incorporating a sensor (S2) that has been calibrated

against S3. Following this initial calibration, a diverse range

of products, each equipped with its own S1 sensor, undergoes

automated calibration on the test bed. This process aims to

ensure accurate mapping between S1 and the reliable reference

provided by S3.

mirror

laser+photo cell

y3

y2

y1

Mechatronic system, S1

Test bed, S2

Manual calibration
instrument, S3

B. Cascaded Calibration using Bayesian Inference

The main concept revolves around modeling the intermedi-

ate sensor calibration, denoted as f2→3, as a Gaussian Process

(GP) [4]. This model captures the mapping from the readings

of sensor S2 to those of sensor S3 as follows:

y3 = f2→3(y2), (1)

where y2 and y3 represent the measured positions by sensors

S2 and S3 respectively. By collecting a dataset D from these

sensors and employing GP models for f2→3, the posterior

model variance, denoted as cov(f̂2→3), can be calculated.

When readings from a low-cost sensor S1 are compared

against the intermediate calibration model and stored as D̂,

the overall calibration model becomes influenced by the model

uncertainty associated with the intermediate calibration:

ŷ3 = E(f̂1→3(y1)) = g(y1, cov(f̂2→3),D, D̂), (2)

where ŷ3 represents the expected true position of the mecha-

tronic system based on the reading of the low-cost sensor S1,

taking into account the variance of the intermediate calibration

model. This expression can be evaluated in real-time to correct

for repeatable sensor inaccuracies, providing an improved

estimation of the true position.

C. Simulation Results

The simulation involves conducting Monte Carlo simula-

tions with a total of 5000 scenarios. In each scenario, the

calibration models f1→2 and f1→3 are randomly generated

using a Fourier basis. The figure below presents a comparison

between the calibration errors ‖ŷ3−ytrue‖2/

√

N obtained from

the proposed calibration approach (blue) and a lookup table

with linear interpolation (yellow). In this normalized empirical

probability density function plot, a better performance corre-

sponds with more probability mass being concentrated to the

left of the figure.
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The results clearly demonstrate the superior accuracy of

the developed calibration approach for two main reasons: (i)

The chosen model structure is better suited for extrapolation,

improving accuracy beyond the measured data range, and

(ii) considering the model uncertainty of the intermediate

calibration model gives more weight to prior information in

these regions. Consequently, the developed approach surpasses

the lookup table method, significantly enhancing calibration

accuracy.

D. Conclusion

The developed cascaded calibration method offers an ef-

fective solution for mitigating position sensor inaccuracies in

mechatronic systems. By accurately modeling and calibrat-

ing the sensors in a cascaded manner, the method achieves

enhanced calibration accuracy while minimizing resource re-

quirements. This approach enables more precise calibration

of mechatronic systems, even with limited resources, thereby

improving their overall performance.
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Mode Switching Algorithm to Improve

Variable-Pitch-Propeller Thrust Generation for

Drones Under Motor Current Limitation

Yuto Naoki1, Sakahisa Nagai1 and Hiroshi Fujimoto1

I. RESEARCH OVERVIEW

Research and development in electric vertical takeoff and

landing (eVTOL) in multirotor types, including small un-

manned aerial vehicles and drones, have attracted attention.

Unlike the single-rotor type, the multirotor type has several

propellers whose pitch is fixed, and only the rotational speed

is controlled. However, in the future, multirotor is expected

to be used in large vehicles for industrial applications which

will require more sophisticated control. Among these require-

ments, the key issues are improving their motion performance,

efficiency, and flying range extension. For these requirements,

adding degrees of freedom (DOF) by using other rotors or

actuators is one of the major solution. Methods to control such

multi-DOF actuators in force dimension is lacking.

Topic 1 Response and Efficiency Improvement of Variable

Pitch Propellers [1].

Variable pitch propellers are being studied to improve per-

formance of the vehicles by adding DOF of mobility. However

the conventional methods of variable pitch control only change

the pitch angle while keeping constant rotational speed, and

the efficiency of the propeller worsens. In [1], a systematic

method applying frequency separation to improve steady-state

efficiency while taking advantage of fast thrust response was

presented. The method separate the thrust command into two

actuator command values by frequency band so that the pitch

angle returns to the optimum pitch angle that results in optimal

propeller efficiency.

1 The authors are with the University of Tokyo, Japan, corresponding e-

mail: naoki.yuto21@ae.k.u-tokyo.ac.jp.

Topic 2 Achievable Thrust Expansion Control at Current

Saturation of Variable Pitch Propeller [2].

The method in the previous topic allows changing the steady

state operating point of the variable pitch propeller. However,

the maximum thrust has limitation at the optimum pitch angle

if the operating point is near to the main motor current

limitation. Therefore, the maximum thrust can be expended by

changing the operating point to the maximum thrust operating

point,which is different from the optimum efficiency operating

point. By applying the frequency separation to this case, an

inverse response has caused due to the interference from the

pitch angle to the rotational speed. Linearized model of a

variable pitch propeller using the current and pitch angle is

derived and the thrust expansion is achieved by using the

model.

Topic 3 Acheve High Response and Efficiency Under Motor

Current Limitation.

It is an important goal to achieve both high response and

steady-state efficiency even when the main motor of the

variable pitch propeller has current limitations. When the

operating range varies significantly, control must take the

maximum current into account. This objective can be achieved

by switching between a mode in which the maximum current

is used as an input to reach the target thrust and a mode in

which the pitch angle is changed to the optimum pitch angle.
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II. SEMINAR TOPIC - Mode Switching Algorithm to Improve

Variable-Pitch-Propeller Thrust Generation Under Motor

Current Limitation

In this section, mode switching algorithm is developed for

the variable pitch propeller thrust control under motor current

limitation [3].

A. Problem Formulation

The models of thrust and counter torque are calculated as

F = (b
F1α+ b

F0)ω
2 (1)

Q =
(
b

Q2α
2 + b

Q1α+ b

Q0

)
ω

2 (2)

where each b

FX
and b

QX
is constant coefficient for the model.

The model of the plant is shown in Fig. 1.

Fig. 1: Block diagram of variable pitch propeller plant model.

The controller is designed to improve the thrust tracking

performance by considering the maximum motor current and

its interference.

B. Maximum Current Variable Pitch Thrust Control with

Switchin of Control Lows

The strategy is as follows. First, the rotational speed and

pitch angle state are moved to reach the target thrust using the

maximum current of the main motor. In this reaching mode,

the pitch angle controller C

reach
is designed by pole-zero

cancellation.

C

reach
=

1

pα
s+ 1

τ

f
s+ 1

(3)

Then after the thrust is reached to the target, if the thrust is

within the reachable range at the optimum efficiency pitch

angle, efficiency is improved by returning to the optimum

efficiency pitch angle. In this efficiency optimizing mode, pitch

angle command is determined to satisfy the minute change

condition of thrust as follows.

dα

dω
=

Fconst

b

F1

(−2ω−3). (4)

Finally,the states are controlled to keep the steady-state value.

The flow of switching modes is shown in Fig. 2.

Fig. 2: The whole flow of the proposed method.

C. Results

The experiment compares the proposal to the conventional

method. The condition is small step size and large step size

which is different in the flow of the switching. The difference

looks small in small step, but the error is reduced from

||e||
2 =0.033N2 to 0.015N2. The performance also improved

in large stap about 1 s in response.
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Fig. 3: Experimental result at small step. ΔF

ref =0.2N
(a)Pitch angle, (b)Thrust, (c)Trajectory map
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Fig. 4: Experimental result at large step. ΔF

ref =0.9N
(a)Pitch angle, (b)Thrust, (c)Trajectory map

D. Conslusions

A feed-forward control method in which the maximum

current is used to control the thrust by the pitch angle and

rotational speed under a current limit is proposed for a variable

pitch system. The response of each control law is improved by

designing the pitch angle control according to the maximum

value of the current used for the change in the rotational speed.

Model correction of the thrust coefficient is a future work.
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Control, Transportation, and Linear Drive

for Next Generation Mechatronics

Wataru Ohnishi1, Masahiro Mae1, Hiroshi Fujimoto1, and Takafumi Koseki1

I. RESEARCH OVERVIEW

The development of modern society is significantly pro-

pelled by sophisticated and complex mechatronic systems. At

the heart of these systems is automatic control, and there is

a growing demand for research and development into control

theories and control system design methodologies that opti-

mizes performance and robustness. These applications span

a wide range, from high-precision positioning systems like

semiconductor manufacturing equipment to massive position-

ing systems like railways.

Koseki-Ohnishi laboratory especially focuses on research in

the areas of Control, Transportation, and Linear drive, or CTL.

In collaboration with industry experts facing the world’s most

advanced challenges, we strive for a high degree of integration

between model-based [1] and data-driven designs [2], aiming

for the unified optimization of both the controller and the

system being controlled [3]. Specifically, we design the control

system optimally based on a model that captures the physical

essence, and further utilize data-driven control strategies, in-

cluding learning control [4], to achieve high performance in

experiments. Moreover, even for electrical [5], mechanical [6],

thermal [7], and plasma [8] systems, which have completely

different time constants, we aim to abstract these systems and

apply the broad principles of control engineering.

Control theory and controller design

1) Non-causal feedforward and learning control for non-

minimum phase systems: Constructing the inverse system of

the controlled system is important in feedforward controller

design and learning controller design. Design methods for

inverse systems, including multirate feedforward control [9],

are discussed in detail in Section II.

The effectiveness of preactuation for non-minimum phase

systems was shown not only in linear time-invariant systems

[1], but also in linear parameter varying systems like boost

converters [5].

Supported by Japan Society for the Promotion of Science (JSPS), NEDO,
Power Academy, The Telecommunication Advancement Foundation, Nag-
amori Foundation, Research Foundation for the Electrotechnology of Chubu,

Fluid Power Technology Promotion Foundation, The Precise Measurement

Technology Promotion Foundation, NSK Foundation for the Advancement of

Mechatronics, Ono Charitable Trust for Acoustics, The NEC C&C Founda-

tion, TEPCO Memorial Federation, and Takahashi Industrial and Economic
Research Foundation.

1 The authors are with the Department of Electrical Engineering and Infor-
mation Systems, Graduate School of Engineering, The University of Tokyo,

Japan, corresponding e-mail: ohnishi@ctl.t.u-tokyo.ac.jp.

Fig. 1. FPD lithography systems [6] Fig. 2. Semi-

conductor

vertical furnace

[7]

2) Data-driven auto-tuning for feedback controllers: The

design of high performance feedback controllers is extremely

important for disturbance suppression. Since obtaining a

highly accurate parametric model for a positioning system with

many resonant modes and position dependence is difficult,

a design method directly using frequency response data is

desired. Methods for explicitly utilizing multiple sensors [10],

disturbance observer design based on linear matrix inequalities

[11], and convex optimization design of controllers satisfying

robust performance combined with RBode and RCBode plots

[12] have been explored in recent research.

3) Applications for state-of-art industrial systems: Driven

by Moore’s Law, the demand for control performance in

semiconductor integrated circuits and flat panel display (FPD)

manufacturing equipment is also increasing exponentially.

We are researching the optimal design of a peak filter for

disturbance suppression, specifically for the positioning stage

of a large FPD manufacturing system shown in Fig. 1. The

stage possesses six degrees of freedom requiring control, mak-

ing explicit consideration of inter-axis interference necessary

and thus rendering the optimization problem nonlinear. Our

focus lies on how to relax the original problem into convex

and achieve higher positioning accuracy [6]. Additionally, we

are also engaged in a study of high-speed and high-precision

temperature control of a semiconductor vertical furnace shown

in Fig. 2 used prior to lithography process [7].

Transportation technology

As with automobiles, there is a trend toward introducing

automatic driving in railways. Recently, with the introduction

of platform doors, the required positioning accuracy is ±35 cm

or even less. Given the dimensions of trains, for instance, the
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Fig. 3. Actual railway vehicle Fig. 4. Developed scale-down HILS.

longest commuter train in Japan measures 300 meters achiev-

ing this stopping accuracy requirement poses a considerable

challenge.

Conducting full-scale experiments using actual railway ve-

hicles can be extremely expensive, and purely theoretical

simulations may lack persuasive power. Therefore, we have

designed a Hardware-In-the-Loop System (HILS) shown in

Fig. 4, which extracts friction drive dynamics of steel wheels

on rails as a hardware component.

Another key innovation is the moving block system with

Communications-Based Train Control (CBTC). This tech-

nology is anticipated to lower maintenance costs and boost

transportation capacity in comparison to a fixed block system.

Our research focus includes developing control methods to

mitigate delay propagation [13] and reduce the quantity of

wayside balises.

Linear drive technology

Linear drive technology, which combines linear motor de-

sign and drive technology, plays a pivotal role in semiconduc-

tor manufacturing equipment and machine tools.

We are in the process of designing magnetic levitation

(maglev) linear motors. These can be of two types: attractive

[14] and repulsive [15] as showin in Fig. 5 and Fig. 6. Their

advantage lies in their ability to provide friction-free, highly

precise propulsion systems. We’re also working on a 3-DOF

positioning stage that actively uses magnetic attractive force.

We’re also exploring new applications of linear motors.

Notably, we’re investigating their use in fuse exchangers for a

novel fuse-semiconductor hybrid circuit breaker [8]. Since Di-

rect Current (DC) doesn’t have a current zero point, interrupt-

ing it proves to be quite challenging, thereby hampering the

broad adoption of renewable energy and the expansion of DC

power grids. Our proposal aims to overcome these challenges

Fig. 5. Attractive maglev stage [14]. Fig. 6. Repulsive maglev stage

[15].

by developing a compact and cost-effective DC circuit breaker.

Our solution uses semiconductors to interrupt the fault current

reduced by the fuse. Moreover, it addresses the fuse’s one-

time-use limitation through rapid fuse replacement facilitated

by an high-acceleration linear motor.

Not only electrical linear actuator, we investigate on pre-

cision control with pneumatic cylinders for heavy positioning

stages, primarily used in FPD manufacturing equipment. This

is achieved by mitigating wave modes caused by compress-

ibility [16].

II. SEMINAR TOPIC - MULTIRATE FEEDFORWARD

CONTROL FOR PERFECT STATE TRACKING

A. Motivation

In digital control systems, there are sampling periods for the

reference value r(t), control input u(t), and observed output

y(t), denoted as T
r
, T

u
, and T

y
, respectively. These periods do

not necessarily have to be the same due to hardware constraints

or a deliberate decision to have different values - a concept

known as multirate control [9]. This section specifically fo-

cuses on feedforward control and iterative learning control,

which require the inversion of the system.

When designing the inverse of a system, non-minimum

phase zeros can become problematic as they introduce insta-

bility to the inverse system. These zeros originate from two

sources: those derived from the zeros of a continuous-time

system and those generated from the discretization due to zero-

order hold. Stable inversion in discrete-time systems designs

inverse without distinguishing between these two types of

zeros. This facilitates perfect output tracking control, provided

there are no uncertainties, including disturbances.

However, as often reported, oscillations shown in Fig. 7

can occur between sampling points. Why does this happen?

The reason is that the zeros produced by the zero-order hold,

especially in the case of positioning control systems, are

generated near z = −1 on the complex plane of the discrete-

time domain. Consequently, the output that passes through the

inverse system oscillates at the sampling frequency.
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Fig. 7. Tracking error of single-rate feedforward control ( ) and multirate
feedforward control ( ) [4].
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B. Multirate feedforward control [9]

The solution to this problem is multirate feedforward con-

trol, which designs an inverse system based on the state

equation of a system that has been lifted by order of the

system. This method, in turn, enables perfect tracking control

of the state trajectory. For instance, in a positioning control

system, not only the position but also the state variable

corresponding to the velocity can achieve perfect tracking,

resulting in an improved intersample response. Moreover, by

using the stable inverse system of continuous time to generate

state trajectories, perfect tracking control of the state can be

achieved even for systems that have non-minimum phase zeros

in continuous time [1]. This control method has been applied

in various fields, including hard disk drives (HDD) [17], stages

in FPD manufacturing system [18], and machine tools [19].

C. State-tracking ILC [4]

This state tracking concept has been extended to a fre-

quency domain ILC framework, which was shown to result in

favorable inter-sample responses [4]. In this framework, the

user’s modeling effort can be reduced because the monotonic

convergence condition for the state tracking error can be

evaluated with frequency response data, which is easy to

obtain. In addition, a non-causal approach was shown to

be useful for estimating state variables important for state-

tracking [20].
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Learning in Machines: From Data to Models,

Control Performance, and Monitoring
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I. RESEARCH OVERVIEW: COMPLEXITY IN FUTURE

DATA-INTENSIVE HIGH-TECH SYSTEMS

Future high-tech systems are subject to increasing per-

formance demands [1], including accuracy, throughput, and

versatility. Important examples of such systems in the manu-

facturing domain include wafer stages for integrated circuit

production, see Fig. 1(a), and the generic substrate carrier

for industrial production, see Fig. 1(b). Important examples

of scientific instruments include large scale telescopes with

deformable mirrors, see Fig. 1(c) and the gravitational wave

detector in Fig. 1(d).

Radically new (opto-)mechatronic system designs and con-

trol approaches are envisaged to meet increasing performance

requirements, including the following examples.

1) The use of additional actuators and sensors to increase

performance and enable innovative designs [2]. Spatially-

distributed actuators control flexible mechanics in new

lightweight designs, see Fig. 1(a). Individually controlled

segmented rollers are used in carriers for extreme positioning

accuracy, see Fig. 1(b). Deformable mirrors are controlled

using a large number of actuators, see Fig 1(c). Additional

actuators enhance accuracy in gravitational wave detectors, see

Fig 1(d).

2) Directly addressing overall system performance goals. In

traditional approaches, the control problem is subdivided into

manageable subproblems associated with system submodules,

leading to suboptimal performance. Directly addressing the

overall performance requirements leads to unparalleled perfor-

mance at the price of an extreme increase in complexity, e.g.,

the integrated control of the two motion stages in Fig. 1(a), see

[3]. Relevant aspects also include unmeasurable performance

variables [4], intermittent sampling [5], and sampled-data

aspects [6]. Furthermore, multi-physics control problems are

addressed, including the thermo-mechanical control system

in Fig 1(a), see [7], and the opto-mechatronic systems in

Fig. 1(c)-1(d), see [8] and [9], respectively.

The key step to enable the envisaged future data-intensive

equipment lies in control design, where the major challenge

lies in dealing with the extreme complexity.

Supported by NWO VIDI 15698 and ECSEL 101007311 (IMOCO4.E).
1 The authors are with the Control Systems Technology research section

of the Eindhoven University of Technology, the Netherlands, corresponding

e-mail: t.a.e.oomen@tue.nl.
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Technology.

From Data to Models for Control

Models are essential to provide performance and robustness

guarantees in future data-intensive machines. To this end,

major developments have been made to identify complex

mechatronic systems from data, including

• nonparametric models for complex [10], multi-physics

[7], operating-condition-dependent [11], slowly-

sampled [12], missing-data [13], and Lebesgue-sampled

[14] systems; and

• parametric models for complex [2] and operating-

condition-dependent [15], [8] systems.

These models are essential for subsequent feedback control

design, see [2] for an overview.

From Data to Control Performance via Learning

The availability of ubiquitous data in future data-intensive

systems provides major opportunities for performance en-

hancement through learning. Essentially, all predictable behav-

ior can be fully compensated. First, disturbances are typically

present that are accurately modelled as a stochastic process.

• Feedback control, [2], is essential to suppress these

stochastic disturbances. These disturbances cannot be

predicted before the task starts, yet typically these have

a certain spectrum. Feedback can suppress these distur-

bances leading to an optimal error that is white noise.

Second, many motion systems have repeating signals that

disturb the system, often of a deterministic nature. A large

range of approaches are relevant.

• Iterative learning control and repetitive control [16], [17].

• Batch-to-batch feedforward [18], including recursive

[19], [20], data-driven [21], and hysteresis [22] variants.

• Gaussian process models for position-dependent and task-

flexible feedforward [23].

• Neural-networks [24] as add-on inverse model completion

of the explainable models in the previous subsection.

From Data and Models to Monitoring

Any physical system degrades due to wear, ageing, etc.

Feedback, feedforward, and learning algorithms provide a

large amount of data on the state of the system during opera-

tion. Besides these data, accurate models are readily available

from control design. These models can be re-purposed and

integrated with data, enabling fault identification, isolation,

and predictive maintenance, leading to drastic downtime min-

imization and increasing productivity [25], [26].
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(a) Envisaged wafer stage.

ryry

rxφz

Steel belt

Point-of-Interest

Actuated roller

Encoder

Position sensor

Actuated roller

(b) Industrial substrate carrier.

(c) Deformable mirror with 207 actuators for a telescope.

(d) Gravitational wave detector.

Fig. 1. Selection of complex data-intensive (opto-) mechatronic systems.

II. SEMINAR TOPICS

A. Gaussian Processes for Advanced Motion Control

Manufacturing equipment and scientific instruments are

subject to increasing speed, accuracy, and flexibility require-

ments. Examples of such systems include wafer scanners,

printing systems, pick-and-place machines, and microscopes.

Learning from data provides huge opportunities in these

future data-intensive mechatronic systems to meet increasing

speed, accuracy, and functionality requirements. To this end,

learning techniques are presented, including Gaussian Pro-

cesses (GPs). Successful applications of GPs for feedforward

and learning control, including identification and learning for

noncausal feedforward, position-dependent snap feedforward,

motor force constants (Fig. 2), nonlinear feedforward, and

GP-based spatial repetitive control, are outlined. Experimental

results on various systems, including a desktop printer, wire-

bonder, and substrate carrier, confirm that data-based learning

can significantly improve the accuracy of mechatronic systems.

Fig. 2. Data-driven learning of Gaussian-Process based motor force compen-
sation.

B. Learning for Precision Motion Control

Iterative Learning Control (ILC) can achieve perfect track-

ing performance for mechatronic systems. The aim is to

present an ILC design tutorial for industrial mechatronic sys-

tems. First, a preliminary analysis reveals the potential perfor-

mance improvement of ILC prior to its actual implementation.

Second, a frequency domain approach is presented, where fast

learning is achieved through noncausal model inversion, and

safe and robust learning is achieved by employing a con-

traction mapping theorem in conjunction with nonparametric

frequency response functions. The approach is demonstrated

on a desktop printer, see Fig. 3. Finally, a detailed analysis of

industrial motion systems leads to several shortcomings that

obstruct the widespread implementation of ILC algorithms.

An overview of recently developed algorithms is given, in-
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cluding extensions using machine learning algorithms. These

are aimed to facilitate broad industrial deployment.

Fig. 3. Performance enhancement on a desktop printer through iterative

learning control
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Feedforward Control using Gaussian Processes for

Semiconductor Manufacturing Equipment

Maurice Poot1, Dragan Kostić2, Jim Portegies3, and Tom Oomen1,4

I. RESEARCH OVERVIEW

The increasing demands on throughput and accuracy of

semiconductor manufacturing equipment necessitate accurate

feedforward motion control that is able to compensate for

unmodeled parasitic effects. These effects include position-

dependent dynamics and motor force constants, base-frame

vibrations, magnetic saturation in the actuators, and point-of-

interest dynamics. In this research, iterative learning control

(ILC) and Gaussian processes (GPs) [1] are employed to tackle

these effects in a wirebonder by ASMPT.

Gaussian Processes for Advanced Motion Control: Position

Dependent Feedforward [2]

Interpretable and task-flexible position-dependent feedfor-

ward is achieved through modeling the feedforward param-

eters as function of position using a GP. A framework for

experiment design in the sense of automatically determining

the training positions is presented by exploiting the uncertainty

estimates of the GP. The position-dependent acceleration pa-

rameter of a wirebonder modeled by a GP compensates for

the variation of the motor force constant.

Gaussian Processes for Advanced Motion Control: Task-

Flexible Feedforward [3]

To achieve task-flexibility in ILC, a non-causal high-order

FIR regularized by a kernel is learned simultaneously with

pre-specified nonlinear basis functions (BF) in closed-loop.

The kernel incorporates prior knowledge, enforcing model

complexity and non-causality to deal with NMP systems.
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Gaussian Processes for Advanced Motion Control: Nonlinear

Feedforward [4]

In contrast to ILC with BF [5] ( ) and the linear non-

causal FIR with pre-specified nonlinearities [3] ( ) as seen

above, here, no knowledge about the nonlinearity is required.

By utilizing input-output data, a GP models the inverse system

dynamics as an NFIR to compensate for unknown nonlinear

effects ( ), as demonstrated on an A3 printer.

Rational Basis Functions in ILC for Multivariable Systems [6]

To address base-frame vibrations in multivariable systems,

rational feedforward in ILC for noncommutative MIMO sys-

tems is developed ( ). By rewriting the optimization prob-

lem a weighted least-squares problem is obtained that can be

solved after each experiment, avoiding the exploitation of the

commutation property of the pre-existing SISO approach ex-

tended for MIMO systems ( ), yielding better convergence

and lower error in an Arizona printer simulation.

Data-Driven and Task-Flexible Point-of-Interest Control

Ongoing research focuses on offline inference of the point-

of-interest with an accelerometer and exploiting the batch-

to-batch process of ILC ( ). By employing rational basis

functions, the flexible dynamics between encoder and point-

of-interest can be compensated, resulting in enhanced tracking

performance for the bondhead in a wirebonder simulation.
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II. SEMINAR TOPIC - FEEDFORWARD CONTROL IN THE

PRESENCE OF INPUT NONLINEARITIES [7]

To achieve high tracking accuracy and task flexibility for

nonlinear systems, extensions to ILC with BF [5] are necessary

that compensate input nonlinearities, e.g., magnetic saturation

in linear actuators.

A. Problem formulation

The aim of this research is to develop a data-driven feed-

forward tuning approach consisting of a Wiener feedforward,

i.e., linear parameterization F (θ) with an output nonlinearity

h(·, φ), see Fig. 1, for Hammerstein systems [8].

C

−

r

f

e

v

y

g

P

xu

F (θ) h(·, φ)

Pfull

Fig. 1. Proposed closed-loop control scheme with Wiener feedforward
f = h(F (θ)r, φ).

B. Approach

The developed approach exploits norm-optimal iterative

learning control (NOILC) to learn a feedforward signal

f

NOILC from data that minimizes the error. The setpoint is

persistently exciting, i.e., a concatenated setpoint with varying

maximum accelerations, see Fig. 2. The parameters θ

opt
, φ

opt

are jointly optimized using a nonconvex optimization proce-

dure with

{θ
opt

, φ

opt
} = argmin

{θ,φ}

‖ŜP

(
f

NOILC
− h(F (θ)r, φ)

)
‖
2
, (1)

where the model ŜP : f → e is introduced to make the cost

function control-relevant, as it relates the feedforward signal to

its contribution to the error, see [9]. See [7] for cost landscape.

C. Results

Experimental results on a commercial wirebonder show a

reduction in tracking error using the developed approach with

f = h(F (θ)r, φ) = φ · atanh

(
ṙθ1 + r̈θ2

φ

)
, (2)

where compensation for magnetic saturation and rigid-body

dynamics is applied, see Fig. 2. The tracking error of the de-

veloped approach is lower and more consistent for increasing

setpoint acceleration than only linear rigid-body feedforward.

Fig. 2. Error signals of linear ( ), the developed ( ), and NOILC ( )

approach for a setpoint with varying maximum acceleration ( ).

Moreover, for setpoints with varying maximum acceler-

ations and motion distances, the relearned mass parameter

is significantly more consistent in the developed approach,

indicating task flexibility, see Fig. 3.

Fig. 3. Mass parameter per setpoint acceleration (left) and motion distance

(right) of the linear ( ) and the developed ( ) approach.

D. Conclusion and outlook

The developed Wiener feedforward approach achieves high

tracking accuracy and task flexibility for Hammerstein sys-

tems. Ongoing research focuses on compensating other non-

linear and position dependent effects in the wirebonder.
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State-Variable Dependent Disturbance

Compensation Signal Generation

Using Gaussian Process Regression
Reon Sasaki, Wataru Ohnishi

I. INTRODUCTION

I
N recent years, DC power transmission technology has

attracted more and more attention. The introduction of DC

system requires a circuit breaker to interrupt the current in

the event of an accident as shown in Fig.I,1. In addition,

since the impedance of transmission lines is lower than that

of alternating current, faults propagate easily, so high-speed

interruption is also required.

Fig. 1. Explosion when fuse and IGBT cutoff failure. In order to
prevent this situation, it is necessary to improve the performance of
the circuit breaker.

This research shows the effect of applying the actuator as

a high-speed fuse changer in the new DC circuit breaker

proposed by our research group, instead of using it for the

electrode opening operation.

II. OPERATION PRINCIPLE

A. Mechanism of current interruption

As shown in Fig.II-A, the basic structure of the circuit

breaker proposed by our research group consists of a FUSE,

which is an inexpensive and compact current limiting device,

R. Sasaki is with the Department of Electrical Engineering and Information
Systems Graduate School of Engineering, The University of Tokyo, e-mail:

r.sasaki@ctl.t.u-tokyo.ac.jp
W. Ohnishi is with the Department of Electrical Engineering and Infor-

mation Systems Graduate School of Engineering, The University of Tokyo,
e-mail: ohnishi@ieee.org

an Insulated Gate Bipolar Transistor (IGBT) that can inter-

rupt limited current at high speed, and a VARISTOR whose

resistance value changes according to the applied voltage and

protects IGBT.

Varistor
IGBT

L0 R0

Fuse

Closing

switch

Oscilloscope

Shunt

resistor

IGBT Drive

circuit

Pulse

generator

Trigger

C0

Charge and

discharge circuit

Servo

driver

Fig. 2. Equivalent circuit diagram of the new circuit breaker.

The advantage of this circuit breaker is that there is no heat

generation due to the ON resistance of the semiconductor.

While semiconductor circuit breakers are capable of high-

speed current interruption, they generate Joule heat due to

ON resistance even during rated operation, requiring a cooling

mechanism. The new circuit breaker does not generate heat

because current flows through the fuse during rated operation.

Furthermore, since the fault current is limited by the fuse

and then cut off, the current load flowing into the system when

a fault occurs is small. Since the IGBT has a low breaking

current, there is no need to use a large semiconductor device,

and further cost reduction and miniaturization can be expected.

B. Role of linear motor

The new circuit breaker uses a fuse, it cannot be used again

once the current is interrupted, and it is necessary to replace

the fuse with a new one in order to restore the state of the

circuit before the accident occurred. Therefore, using a linear

motor, reclosing the circuit can be achieved by replacing the

fuse at high speed. A new fuse is introduced into the circuit

by sliding the fuse after the fuse is shut off and the system is

restored.

III. DISTURBANCE COMPENSATION

Replacing the fuse, disturbance occurs during contact be-

tween the electrodes and the fuse due to reclose. Due to

this disturbance, the re-closing by the fuse, that is, the time

until power restoration becomes uncertain. Since the time to
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(b) CAD model with some parts

hidden.

(a) Photo

Permanent

magnet for LM

Fuse in use

New fuse

Contact
Contact

Linear

motor (LM) Coil for LM

(c) Side view

FusesContact Contact

Coil for LM on ground side

Permanent magnet for LM on fuse side

Linear encoder

Fig. 3. Structure of fuse changer equipped with transverse flux linear motor.

recovery from an accident is a very important performance

indicator for protecting precision equipment, highly repro-

ducible control that compensates for disturbances is required.

To compensate this, estimation of disturbance by Gaussian

Process Regression(GPR) as shown in Fig.III.

x
ẋ

Referemce

Trajectry

Mapping by GPR

Training

Data

Disturbance

Fig. 4. Disturbance mapping using Gaussian process regression.

The disturbance based on the previously measured linear

model is estimated from the Kalman Smootherusing the posi-

tion, velocity, and control input data during a feedback control

experiment.
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Fig. 5. Time-series data of acquired data and disturbance compensated signal.

Then, GPR is performed with the position and velocity as

input and the magnitude of the disturbance as output, and

the input-output relationship is regressed. Then, by estimating

the magnitude of the disturbance expected from the position

and velocity on the target trajectory and providing a signal

to compensate for it (Fig.III), the Saidai tracking error was

reduced by 66.2%.

IV. FUTURE WORK

A new control method has been proposed that combines

Iterative Learning Control(ILC), which applies a learning filter

to the tracking error to determine the most effective control and

performs highly accurate control with repeated experiments,

and GPR asn shown in Fig.IV.

ẍ

x
ẋ

Referemce

Trajectry

Mapping by GPR

Fig. 6. Combination of ILC and GPR.

REFERENCES

[1] W. Ohnishi, Y. Inada; S. Zen; R. Sasaki, et al. “Proof-of-Concept of a

Fuse-Semiconductor Hybrid Circuit Breaker With a Fast Fuse Exchanger,”

IEEE Transactions on Power Delivery, 2023

[2] R. Sasaki, W.Ohnishi, at el. ”Compensation for state variable dependent
disturbances in linear motor using gaussian process regression“ 2022

[3] R. Sasaki, W.Ohnishi. at el. ”Basic study of high-speed fuse replacement

using a linear motor in the fuse semiconductor hybrid circuit breaker“

2021.

Reon Sasaki received the B.E., M.S. degrees from

The University of Tokyo, Japan, in 2021, and 2023,

respectively. Presently, he is Currently enrolled in

the doctoral program at the University of Tokyo

Graduate School of Engineering, Department of
Electrical Engineering. Mainly engaged in research
on motion control using Machine Learning.

Wataru Ohnishi received the B.E., M.S., and Ph.D.

degrees from The University of Tokyo, Japan, in

2013, 2015, and 2018, respectively. Presently, he is

an associate professor with the Department of Elec-

trical Engineering and Information Systems, Gradu-

ate School of Engineering, The University of Tokyo.

He held a visiting position at the Eindhoven Uni-

versity of Technology. His research interests include

high-precision motion control and optimization. He

is a senior member of The Institute of Electrical

Engineers of Japan.

First JSPS-NWO Seminar: Research Network on Learning in Machines Book of Abstracts

54



Identification for Multivariable Precision

Mechatronics

Paul Tacx1, Matthijs Teurlings1, Roel Habraken1,4, Gert Witvoet1,4, Marcel Heertjes1,3, Tom Oomen1,2

I. RESEARCH OVERVIEW

Stringent demands regarding performance in mechatronic

systems require the flexible dynamic behavior to be addressed

explicitly in the control design.

Data-based H∞-norm estimation [1]

Accurate H∞-norm estimation is of critical importance for

robust control design. The main idea is to estimate the global

H∞ norm by estimating the finite-frequency L∞ norm of the

local models through the generalized KYP lemma.

Visualizing & Comparing Multivariable Uncertain Systems [2]

The availability of reliable and systematic robust control

algorithms has spurred the development of uncertainty struc-

tures of multivariable model sets for robust control. A unified

approach is developed for for generating element-wise and

multivariable Bode plots for both the magnitude and phase of

multivariable uncertain systems.

One-step Centralized Overactuation [3]

A systematic one-step robust control design approach to go

beyond the conventional performance limits through explicit

control of the flexible dynamical behavior using additional

actuators and sensors.

Funding: This work is part of the research programme VIDI with
project number 15698, which is (partly) financed by the Nether-
lands Organisation for Scientific Research (NWO). Corresponding e-mail:

p.j.m.m.tacx@tue.nl.
1Eindhoven University of Technology, Department of Mechanical Engi-
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Spatio-Temporal Modeling for Next-gen Motion Control [4]

The proposed approach exploits the modal modeling frame-

work and the overactuated setting to enhance the estimation

of the modeshape. The enhanced spatial resolution of the

modeshape is used to estimate the spatial system behavior.

Design Analysis of Future Deformable Mirrors [4]

Modeling the flexible dynamic behavior of next-generation

deformable mirrors is essential for the design analysis and

control. An unified approach is developed for the identifica-

tion of deformable mirrors with a large number of spatially

distributed actuators and a limited number of sensors.
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II. SEMINAR TOPIC - Spatio-Temporal Modeling for

Next-Generation Motion Control

A. Background

Flexible dynamics in next-generation motion systems lead

to inherent spatio-temporal system dynamics. Inevitably, next-

generation control techniques increasingly rely on accurate

modeling techniques that capture the spatio-temporal nature of

the flexible dynamic behavior [1]. Two case studies are being

investigated: adaptive optics and mechanical stage control.

B. Problem Formulation

A key challenge for next-generation motion systems is the

modeling of the spatio-temporal flexible dynamics. Traditional

parametric and nonparametric identification approaches aim to

identify the temporal behavior of the flexible dynamics. As a

result, the flexible dynamic behavior is estimated at a limited

spatial grid which limits the understanding of the position-

dependency of the flexible dynamic behavior [2]. The aim of

this paper is to identify and reconstruct the spatio-temporal

behavior for spatio-temporal control of next-generation motion

systems with a large number of spatially distributed actuators.

C. Approach

Given a motion system G

m
: [u1 ... u

na
]
�

→ [y1 ... y

ns
]
�

with a large amount n
a

of spatially distributed actuators and

a limited amount of n

s
sensors, i.e. n

s
� n

a
. The aim is

to model the spatio-temporal nature of the flexible dynamic

behavior. The approach includes the identification of modal

models [2]. The modal system description is exploited by

including mechanical systems knowledge [3]. The proposed

approach allows enhancing the estimation of the spatial system

behavior [4].

D. Results

The proposed approach is illustrated on an experimental

beam setup, see Figure 1. The approach proposed in this

paper allows identifying the full response G

m
while only

having access to the first sensor by exploiting the proposed

approach. In particular, the approach allows analyzing the

spatio-temporal behavior with limited sensing capabilities, see

Figure 2. In particular, the full system G

m
is identified while

only having access to the first sensor.

Fig. 3: Experimental overactuated beam setup. The three

voice-coil actuators are indicated in red. The flexible beam

system G

m
is actuated by three voice coil actuators (red) and

the displacement is measured by three sensors (blue and grey).

The proposed method only considers the first sensor (blue) to

estimate the full system G

m
.

Fig. 4: Element-wise Bode magnitude plot of the non-

parametric estimate of the full system G

m
(grey), the non-

parametric estimate of subsystem G

o
(blue), and extended

plant G
m

(dashed red).
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Nonlinear system identification for high-tech

systems

Koen Tiels1

I. RESEARCH OVERVIEW

Increasing demands on future high-tech systems for in-

creased throughput, increased accuracy, and reduced costs lead

to lightweight designs that show significant nonlinear behav-

ior. Capturing this nonlinear behavior can be beneficial for

accurate simulation and for designing feedforward controllers.

New challenges in linear model identification

Linear models are still very useful to provide insight

into the dynamics of the system or as initialization for a

nonlinear model. Moreover, new challenges in linear system

identification pop up. One example is due to non-conventional

sampling, e.g., Lebesgue sampling [1], moving away from

traditional equidistant sampling. Another example is due to

thermal aspects of the system becoming important for accurate

modeling of the system behavior. Since thermal dynamics are

slow, typically long data records are observed that cannot be

captured without interruptions, eventually leading to missing

samples [2].

Nonlinear behavior in high-tech systems

Increasing requirements necessitate and justify the use of

nonlinear models and their subsequent use in motion control.

One aspect that is often present in motion systems is hysteretic

behavior. Accurately modeling (the inverse of) this behavior

and compensating for it with feedforward control can lead to

significant improvements in tracking performance [3].

Supported by NWO VIDI 15698 and ECSEL 101007311 (IMOCO4.E).
1 The author is with the Control Systems Technology research section of the

Eindhoven University of Technology, the Netherlands, corresponding e-mail:

k.tiels@tue.nl.
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Linear time-invariant solutions for enhancing

iterative learning control theory

Kentaro Tsurumoto1, Wataru Ohnishi1 and Takafumi Koseki1

I. RESEARCH OVERVIEW

High precision motion systems require fast, precise, and

reliable control. Iterative learning control (ILC) is a powerful

method meeting all of these requirements for high precision

motion systems with repeating tasks. This research is posi-

tioned at enhancing the strength of ILC theory with negligible

compromise. First, an overview of two research topics utilizing

non-causality for state estimations is given, and secondly the

synergy of combining ILC frameworks is elaborated.

Non-causal filtering improves off-line state estimation [1]

During off-line analysis, unlike on-line, full experiment data

is provided in advance. This motivates utilizing the full data

when making a state estimation for each point of time.

t

0 Nk

used unused
︷ ︸︸ ︷provided data

forward calculation backward calculation

causal state estimation non-causal state estimation
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e
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]

x

x̂b

To make full use of the data, in addition to a standard causal

state observer ( ), an unstable state observer with the same

bandwidth as the causal observer is constructed. By applying

stable inversion to the unstable state observer and filtering

the unused data backwards in time, a stable non-causal state

estimation ( ) is obtained. Finally, by combining both state

estimations based on their covariance matrix, an improved

state estimation is acquired.

Results of non-causal filtering lead to significant state

estimation error reduction ( ), compared to a causal estimate

( ) with the same bandwidth.

1 The authors are with the Department of Electrical Engineering and

Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo, Japan,

corresponding e-mail: k.tsurumoto@ctl.t.u-tokyo.ac.jp.
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Non-causal state estimation improves inter-sample behaviour

of iterative learning control [2]

ILC can theoretically achieve perfect on-sample tracking

performance ( ). However, due to discretization, systems often

have zeros near the stability limit. This leads to an oscillatory

inter-sample behavior ( ). Although state-tracking ILC [3]

has introduced the idea of state-tracking to deal with this

problem, the previous research does not take the advantage of

off-line learning and uses causal state estimations. This leads

to a steady state error caused by modeling error of the system

( ).

By using non-causal state estimation for state-tracking ILC,

on-sample state error ( ) is significantly improved and inter-

sample tracking performance ( ) is further enhanced.
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II. SEMINAR TOPIC - Combined ILC: Achieving Both Task

Flexibility and Higher Tracking Performance in ILC [4]

The use of basis functions in iterative learning control (B-

ILC) enhances task flexibility for ILC [5]. However, B-ILC

has a compromise in achievable tracking performance when

compared to other ILC frameworks such as frequency-domain

ILC (F-ILC). The aim of this research is to develop an ILC

framework combining the frequency-domain design and basis

function approach, enhancing tracking performance against

repeating tasks while achieving task flexibility.

A. Problem Formulation

The control objective is to minimize the tracking error e
j
=

r

j
− y

j
for trial j as possible for both when same tasks are

repeated and tasks have been changed. The supposed close-

loop setup is shown in Step 0 of Fig. 1.

B. Approach

As shown in Fig. 1, the developed framework consists of

parallel feedforward update of basis function component f

θ

j

and frequency-domain component f ILC

j
.

Step 1: Learning of basis function component fθ

j+1

Instead of minimizing e as the validation function, minimiz-

ing e

θ := e+ SGf

ILC = Sr− SGF (θ)r is proposed. Due to

this modification, fθ will be able to learn an accurate inverse

model G−1, without interacting with the learning of f ILC

j
.

Step 2: Learning of frequency-domain component f ILC

j+1

The feedforward update law is defined as

f

ILC

j+1
= Q(f ILC

j
+ Le

j
) + f

θ

j
− f

θ

j+1
. (1)

With an assumption of an asymptotic FF controller F (θ∞) =
lim

j→∞ F (θ
j
) and

|Q(eiω)||1−G(eiω)S(eiω)L(eiω)| < 1, ∀ω, (2)

the asymptotic error e∞ = lim
j→∞ e

j
for C-ILC becomes,

e∞ =
(1−Q)S

1−Q(1− SGL)
(1−GF (θ∞)) r. (3)

This achieves (1−GF (θ∞)) times performance improvement

then that of standard F-ILC. Note that in this implementation

f

ILC

j+1
is reset to zero when task is changed.

C. Results

Tracking performance per iteration of C-ILC is compared

with traditional F-ILC and B-ILC in Fig. 2. From the result,

C-ILC exceeds the performance of F-ILC for repeating tasks,

while ensuring the same task flexibility as that of B-ILC.

D. Conclusions

An ILC framework for combining a frequency-domain de-

sign and basis function approach is developed, where parallel

learning of each component is achieved without interacting

with each other. Ongoing research is aimed at consideration

of external disturbance and extension to MIMO systems.
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Fig. 1. Proposed Combined ILC (C-ILC) structure.
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Fig. 2. Comparison of F-ILC ( ), B-ILC ( ), and C-ILC ( ) tracking

performance. From the 10
th trial and on, the task is changed to a different

reference trajectory from the 0
th to 9

th trial.
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A Proposal for a Simulated Running Environment

for Railway Vehicle Control Engineering Tests

Using a Scaled Roller Rig that Simulates

High-Speed Friction Fluctuations

So Ueno1,2, Wataru Ohnishi1 and Takafumi Koseki1

I. RESEARCH OVERVIEW

Demand for automated railroad operation is increasing due

to the expected decrease in the number of railroad workers in

the future caused by birthrate decrease shown in figure below.

(Figure by the World Bank [1])

However, there are several factors that make automated

operation of rail vehicles difficult. For example, torelance of

stop position error are limited by platform door as shown in

figure.

Hence, precise automatic operation control technology is

required, but it is not easy to use actual railcars for the

evaluation of technology.

Therefore, ”roller rig devices,” in which wheels are rotated

on a disk that simulates rails to simulate the running of a

vehicle, are used in research [2], and in addition to full-

scale devices, scaled-down devices are also being used [3].

1 Koseki Ohnishi Laboratory, The University of Tokyo
2 Corresponding e-mail: s.ueno@ctl.t.u-tokyo.ac.jp

Since rolling stock runs repeatedly on the same track, it is

expected that learning control that takes into account variations

in the maximum adhesion force between the wheels and rails

due to running conditions will be useful. However, there

is no research on high-speed simulation of adhesion force

fluctuations in actual railroads.

Proposal for roller rig system simulating high-speed friction

fluctuations [4]

.

A 1/10 scale roller rig device was fabricated, featuring a

linear motor thrust to control the pressing force between the

wheel and the roller rig, which can simulate the variation of

maximum adhesion force quickly.

Measurement of adhesion by a scaled roller rig [5].

We measured the adhesion characteristics of the manufac-

tured roller rig system using methods described in next page.
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II. SEMINAR TOPIC - ROLLER RIG SYSTEM ADHESION

CHARACTERISTICS MEASUREMENT

A. Necessity of adhesion characteristics measurement

A 1/10 scale roller rig device featuring a linear motor to

control the pressing force between the wheel and the roller

rig to simulate the fluctuations in adhesion at high speed.

In order to verify that this device successfully simulates the

basic adhesion characteristics of a real railway vehicle, it is

necessary to measure the relationship between the “slip speed”,

which corresponds to the difference between the wheel speed

and body speed of a real vehicle, and the “adhesion force

between wheel and roller rig”, which is the speed difference

between the wheel and roller rig contact area.

B. Measurement of adhesion characteristics using disturbance

observer

1) Measurement Procedure:

1) Determine the transfer function from the output torque

of the roller rig and car wheel motor to the angle of

rotation, respectively.

2) Build a disturbance observer to determine the adhesion

force from the wheel rotation angle information.

3) Measure the relationship between slip speed and adhe-

sive force by pressing the wheel and the track wheel

together with a linear motor and then increasing the

torque of the wheel motor in this state.

2) System identification of car wheel simulating parts: The

transfer characteristic from the torque of the wheel motor to

the angle of rotation of the wheel is assumed to be the sum

of three shown below.

1) Pure integration (depending on inertia moment)

2) Viscous resistance torque proportional to rotational

speed

3) Frictional resistance torque with a constant magnitude

independent of rotational speed

Inertia moment is measured using chirp signal injected to

car wheel motor torque command value.

Viscous and frictional resistance parameters are measured

using car wheel motor torque command value under the

condition car wheel is rotating in constant speed.

3) Constructing disturbance observer: Using parameters

indicating characteristics of car wheel measured with methods

above, disturbance observer for measuring adhesive force

between car wheel and roller rig is constructed as shown in

Fig.1.
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Fig. 1. Disturbance observer for measuring adhesion force F̂

C. Results

In actual railcars, when the ”slip speed,” defined as the

difference in speed between the car body and the wheel, is

small, the adhesive force increases with the sliding speed, and

when the sliding speed exceeds a certain level, the adhesive

force begins to decrease. As shown in figure, the same

characteristics were obtained in this experimental apparatus.

Fig. 2. Results of seminar topic.

III. CONCLUSIONS

The adhesion characteristics between the wheel and the

roller rig of the experimental system have the same character-

istics as those of a real vehicle.
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Direct Yaw Moment Control for Electric Vehicles

Based on Adaptive Driving Force Control

Takumi Ueno1, Binh-Minh Nguyen1,2 and Hiroshi Fujimoto1,3

I. RESEARCH OVERVIEW

Electric vehicles are not only environmentally friendly in

terms of transportation but also novel motion control systems,

thanks to their fast and accurate torque generation capacity.

In addition, in-wheel-motor vehicles can control each wheel

independently. Due to this merit, direct yaw moment control

(DYC) has been proposed to control the yaw-rate and improve

the lateral stability. However, there is still an open issue

with merging the DYC and traction control. Thus, this paper

proposes new yaw moment control based on adaptive driving

force control. Note that this paper is an abridged version of

[1], and the details can be found there.

Topic 1 Vehicle Dynamics Model.

Fig. 1 shows the vehicle dynamics model. The lateral motion

of the vehicle is described as

MV

(
dβ

dt

+ γ

)
= 2(Y

f
+ Y

r
+ Y

d
) (1)

Iγ̇ = N

z
−N

t
−N

d
. (2)

The rotational motion of each wheel is described as

J

ij
ω̇

ij
= T

ij
− r

ij
F

dij
. (3)

When the vehicle accelerates or decelerates, the wheel velocity

V ω = rω differs from the vehicle velocity V because of the

tire’s elastic deformation. The slip ratio λ is defined as

λ

ij
=

V

ωij
− V

max(V
ωij

, V, ε)
. (4)

(a) Planar vehicle model. (b) Wheel rotational model.

Fig. 1. Vehicle model.
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Program from New Energy and Industrial Technology Development Organiza-
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1,2,3 The authors are with the University of Tokyo, Japan, corresponding

e-mail: ueno.takumi22@ae.k.u-tokyo.ac.jp.

Topic 2 Yaw Moment Control.

Fig. 2 shows the block diagram of yaw-rate controller [2].

The yaw-rate reference can be calculated as

γ

∗ =
1

1 +AV

2

V

l

δ. (5)

To improve the robustness of the yaw-rate control under the

uncertainty of road conditions and the unknown disturbances,

the yaw moment observer is utilized. Through the YRC, in

case the vehicle is a rear-drive system, the force distribution

law (FDL) is designed as[
F

∗
dRR

F

∗
dRL

]
=

[
1/2 1/d
1/2 −1/d

] [
F

∗
dall

N

∗
z

]
. (6)

Fig. 2. Block diagram of the YRC.

Topic 3 Driving Force Control.

Fig. 3 shows the block diagram of the driving force con-

troller (DFC) [3]. The DFC has a cascade configuration, in-

cluding an integral force controller and a proportional-integral

wheel speed controller. The driving force is feedbacked thanks

to the driving force observer, which utilizes the motor torque

and the angular velocity of the wheel.

Fig. 3. Block diagram of the DFC.
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II. SEMINAR TOPIC - DESIGN OF THE

VARIABLE-RATE-SLIP-RATIO-LIMITER: APPLIED

TO DFC

A. Problem Formulation

The slip ratio limiter in DFC is used to prevent excessive

tire slippage. The conventional DFC uses the limiter as a

constant value. However, the situation is quite different when

the vehicle turns. The driving force F
d

is limited by the vertical

force. Due to the load transfer, the vertical forces of the left and

right sides change with the situation. Therefore, the optimal

driving force also changes in real-time. Consequently, the

limited value of the slip ratio would be adaptively calculated

in real-time to optimize the yaw moment generation capability

of the vehicle.

B. Approach

In the situation that the wheels slip and slip ratio reaches

the limited value, the driving forces of the rear left and rear

right wheels are expressed as

F

di
= λ

limi
D

si
(7)

(8)

Let k be the rate between the left and right limiters, and it

can be given as

k(t) =
λ

limR

λ

limL

. (9)

In this study, assuming that the road conditions are the same

between both wheels, the driving stiffness of both wheels is

treated as D

sL
= D

sR
. Thus, a various-rate-slip-ratio-limiter

k(t) can be updated in real-time as

k(t) =

{
1 +

2N
∗

z

dF̂dRL

(V ≥ V

t
)

1 (V < V

t
)
, (10)

where N

∗
z

is given by the outer-layer, and F̂

dRL
is given by

the DFO.

C. Experiment

a) Experimental Setup: The FPEV2-Kanon, which was

developed by our research group, is used as an experimental

vehicle. We use the vehicle as a rear-drive system. The

vehicle run straight at the speed of 10 km/h and makes a

tip-in accelerated turn from 1 s. Under this condition, three

(a) Test scenario. (b) Trajectory setting.

Fig. 4. Experimental setup.

test cases are conducted as follows.

• Case-1: The vehicle is handled by the driver (Without

DYC).

• Case-2: The vehicle is controlled by the DYC that utilizes

the DFC with a fixed-slip-ratio-limiter.

• Case-3: The vehicle is controlled by the proposed DYC.

In Case-2, lambda

lim
of both wheels are set as 0.06. On

the other hand, in Case-3, lambda

limL
is set as 0.06 and

lambda

limR
is set as k(t)× 0.06.

b) Experimental Result: Fig. 5 shows the experimental

result. To evaluate the effectiveness of the proposed system,

the root mean square deviation (RMSD) of the yaw-rate

control errors is calculated from 1 to 5 s. In comparison with

Case-1, Case-2 can reduce the tracking error by 23.8%.

Remarkably, the tracking error can be reduced by about 86.5%
by Case-3.

0 1 2 3 4 5
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

(a) Case-1.

0 1 2 3 4 5
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

(b) Case-2.

0 1 2 3 4 5
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

(c) Case-3.

Fig. 5. Experimetal result.

TABLE I
RMSD OF YAW-RATE.

Method RMSD of yaw-rate rad/s Rate of decrease %

Case 1 7.97×10
−4 0

Case 2 6.07×10
−4 23.8

Case 3 1.07×10
−4 86.5

III. CONCLUSION

In this paper, the DYC system based on adaptive driving

force control is proposed. The boundary of the slip ratio limiter

is updated in real-time by utilizing the yaw moment command

and the estimated driving force. The experimental results show

that the proposed method can operate effectively even when

cornering with acceleration on the low friction surface. In the

future, we will develop separate limiters for both the left and

right wheels and consider the split-μ scenario.
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Next-Generation Opto-mechatronic systems: control

for free-space optical communication

G. Witvoet1,2, M. van Dael1, R. Geraldes1,3, M. van Meer1, N. Mooren1,4, P. Tacx1 and T. Oomen1,5

I. RESEARCH OVERVIEW

Opto-mechatronics is a multidisciplinary field of expertise

in which physics and engineering come together to create

novel instruments and systems. Nowadays, opto-mechatronic

instruments can be found in many semiconductor, astronomy

or space applications, and it is gaining popularity both in

research and industry; both in high- and low-tech domains.

In our research we focus on two different trends that we

recognize in recent developments in opto-mechatronics. As

discussed next, these trends are partly motivated by the domain

in which opto-mechatronics is employed.

Novel complex concepts and systems

In many scientific applications there is a trend towards novel

and more complex opto-mechatronics concepts, with larger

complexity in e.g. the optical and mechanical designs.

One example is our work on systematic design philosophies

for a High-Dynamic Double-Crystal Monochromator for the

Sirius synchrotron [1], in which, among others, dynamic

error budgeting techniques have been employed to design and

create an opto-mechatronic machine concept with unsurpassed

accuracy and scanning possibilities.

1 The authors are with the Control Systems Technology research section

of the Eindhoven University of Technology, the Netherlands; corresponding

e-mail: g.witvoet@tue.nl.
2 Also with the Optomechatronics dept. at TNO, Delft, the Netherlands.
3 Also with Brazilian Synchrotron Light Laboratory, Campinas, Brazil.
4 Currently with Sioux, Eindhoven, the Netherlands.
5 Also with the Delft Center for Systems and Control, Delft University of

Technology, the Netherlands.

Controller design for such systems is not straightforward,

e.g. due to their multi-variability and non-linearities. In our

work for the Virgo gravitational wave detector [2] we offer

systematic controller design procedures, which have delivered

improved performance on the sensitivity of the detector.

Multi-variability comes to an extreme in Adaptive Optics

(AO), which utilizes deformable mirrors (DMs) with hun-

dreds of actuators. Our work on DMs [3] focuses on the

dynamic identification and systematic control synthesis of such

massive-MIMO systems.

Maintaining performance with lower costs

In industrial applications we see a cost-reduction trend,

in which opto-mechatronic products need to be built with

cheaper, less-performing components, while system perfor-

mance needs to be maintained.

Our work on a substrate carrier led to novel Gaussian

Process (GP) repetitive control approaches [4] to compensate

for imbalances introduced by non-perfect mechanics.

This technique has also been employed to improve commu-

tation of Coarse Pointing Assemblies (CPA), while GPs have

also been successfully applied in calibration of test benches

[5] meant for mass production of such CPAs.
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II. SEMINAR TOPIC - Free-space optical communication

In free-space optical communication (FSOC) both opto-

mechatronic trends come together, especially in the space

domain, where optical links need to be established between

terminals hundreds (e.g. for LEO-to-ground) or ten thousands

(e.g. for GEO-to-ground) of kilometers apart, using laser

beams with divergences of only 10 to 100 μrad. For successful

fast data transfer between such terminals, absolute laser point-

ing accuracies of just a few μrad need to be achieved, even in

the presence of vibrations and atmospheric turbulence. This

introduces challenges both in the opto-mechatronic concept

itself, as well as on the control design.

A. FSOC developments at TNO

Space-relevant FSOC is still heavily under development

by many parties world-wide; Netherlands Organization for

Applied Scientific Research (TNO) is contributing to these

developments by designing, realizing and testing various pro-

totype FSOC terminals for different use cases. This includes

both ground stations, as well as space- and airborne terminals.

Fig. 1. The TOmCAT optical bench (left) and test trailer (right).

One of the demonstrator ground stations is TOmCAT, shown

in Fig. 1, which is the outcome of a feasibility study for

terabits/second feederlinks, by utilizing both AO for high-order

compensation of atmospheric turbulence, and multiplexing

multiple beams of different wavelength. This technology has

been demonstrated in an actual field test over 10 km, during

which TOmCAT was built into a portable trailer.

Fig. 2. Ultra-Air (left) and LEOCAT (right) demonstrator terminals.

Flight hardware comes with different challenges. For exam-

ple, for the airborne Ultra-Air terminal (Fig. 2, left) vibrations

from the airplane it is installed in form a huge challenge

to meet the extreme pointing requirements to be able to

communicate with a GEO satellite 36 000 km away. For space-

borne terminals, such as LEOCAT (Fig. 2, right, designed for

data relay between LEO satellites), the tight volume, mass and

cost constraints are often the most important design drivers.

B. The CubeCAT DTE terminal

In this seminar talk we will discuss some technical details

of another space-borne terminal, called CubeCAT, shown in

Fig. 3. CubeCAT is a direct-to-earth (DTE) terminal designed

for commercial cubesats and fits all its functionality in just

10× 10× 10 cm, i.e. not only the complete optical head, but

also the laser, and all electronics.

Fig. 3. The CubeCAT optical head (left) and final state before launch (right).

CubeCAT measures the angle of the incoming beacon light

via a sensitive quadrant detector, and uses that information

in real-time to control a Fine Steering Mirror (FSM), such

that the transmitted data laser is perfectly aligned with the

incoming beacon, and is thus properly pointed to the ground

station. CubeCAT has been launched into orbit in April 2023,

and is currently being commissioned. In this talk the opto-

mechatronic design of CubeCAT will be discussed, as well as

the feedback control trade-offs and verification tests.
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Control Scheme of RRO Compensation for Track

Mis-registration in HDDs

Shota Yabui1, Takenori Atsumi2 and Atushi Okuyama3

I. RESEARCH OVERVIEW

Hard disk drives (HDDs) which can store of large amount of

digital data are supporting information society. To read/write

the digital data on the disk, the magnetic head must be

controlled precisely. The data is recorded as concentric orbits

called as tracks on the disk. In the controller design, servo

engineer must evaluate track mis-registration (TMR) for the re-

liability [1]. The TMR is one of criteria of relative positioning

accuracy for the tracks for risk assessment of data incorrectly

writing. The risk means that the magnetic heads write on the

different track from the target track. The relative positioning

accuracy in the tracks should be improved to decrease the risk.

Head positioning system of HDDs

To read/write digital data on disks, the HDDs has a position-

ing system to control magnetic heads. The magnetic head po-

sitioning control system using the dual-stage actuator system

is shown below figure. The dual-stage actuator system uses

two actuators, a voice coil motor (VCM) and a micro-actuator.

Coarse movement is controlled by the VCM attached to the

base of the actuator arm, and fine movement is controlled by

the micro-actuator attached to the tip [2].

Block diagram of the head positioning control system

The block of the dual-stage control system is shown in the

below figure. Where, P

v
is the control object of the VCM

side, P
p

is the control object of the micro-actuator side, and

C

v
is the control for the VCM, C

p
is the controller for the

micro-actuator. d
RRO

is RRO which is distort the reference

signal r.

1 First author is with Tokyo City University, Japan, corresponding e-mail:

yabuis@tcu.ac.jp.
2 Author Two is with Chiba Institute of Technology.
3 Author Three is with Tokai University.

The characteristic of RRO

d

RRO
is assumsed to consist of the synchronous RRO and

asynchronous RRO. The synchronous RRO d

sRRO
is main

caused by unbalanced force or harmonic vibrations of the

rotating disk. Shapes of the vibrations are dependent on the

disk location, that is, trajectories of the vibration are similar

between the tracks. The asynchronous RRO d

aRRO
is main

caused by noise or mechanical vibration. These are random

vibrations, that is, the trajectories are no regularity between

the tracks. Time responses on the circumference of d

sRRO
,

d

aRRO
, and d

RRO
= d

sRRO
+d

aRRO
in number n and n+1

tracks are shown in below figure. The reference signal is r = 0
for n track, and r = 52.7× 10−9 for n+ 1 track (52.7nm is

inter-track distance in 482000TPI).
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II. SEMINAR TOPIC - Relative positioning accuracy in the

head positioning control system of HDDs

The TMR indicates statistical data for the evaluation of

relative positioning accuracy for the tracks. It estimates a risk

that the magnetic heads accidentally write on the different

track of the target track, namely destroying the original data. In

this study, we propose a control scheme in the head positioning

control system for RRO compensation for the TMR.

A. A Problem formulation

To evaluate the relative positioning accuracy, the control

system is following for the reference r distorted by the RRO

d

RRO
of nine tracks from n to n+8 in this simulation. After

that, we evaluate the closest distance of the head position y

c
.

The time responses of the d

RRO
are shown in Fig.1.

Fig. 1. Simulation model in this study.

B. B Proposed control system

The proposed control system is shown in Fig.2. We em-

ploy the adaptive feedforward cancellation (AFC) which can

compensate for the RRO adequately.

u

i,j
(k) = p

i,j
(k) cos(ω

i,j
Tk) + q

i,j
(k) sin(ω

i,j
Tk) (1)

p

i,j
(k) = p

i,j
(k − 1) + λ

i,j
e(k) cos(ω

i,j
Tk + θ

i,j
) (2)

q

i,j
(k) = q

i,j
(k − 1) + λ

i,j
e(k) sin(ω

i,j
Tk + θ

i,j
) (3)

Here, p
i,j

and q

i,j
are the adaptive parameters, λ

i,j
is the step

size parameter, and θ

i,j
is the phase parameter (subscript i for

d

sRRO
, subscript j for d

aRRO
. p

i,j
and q

i,j
are updated by

the recurrence formula as equations (2) and (3).

Fig. 2. Simulation model in this study.

Although the original algorithm as shown in equations (1) -

(3) are recurrence formula, the formula can be transformed to

a transfer function [3]. Based on the trasfer function model,

the frequency responses of open loops are shown in Fig.3.

The gain of open is be increased at the harmonic frequency

of d

sRRO
. AFCs works to follow strongly for the distorted

reference including d

sRRO
. The gain of open is be decreased

at the harmonic frequency of d
aRRO

. AFCa works to remove

the influence of d
aRRO

for the control system.

Fig. 3. Frequency response of the open loop

C. Subsection C

For comparison study, we simulate the three cases of the

control system: all-tracking system (conventional method) [3],

proposed control system. Figure 4 indicates the time responses

of y

c
close up n + 6 track and n + 7 track in the range

from 1.4ms to 1.6ms. The relative position around 1.5ms in

three cases, the case of the all-tracking system is 34.5 nm, the

case of the proposed control system is 52.5 nm. The proposed

control system can improve the relative positioning accuracy.

Fig. 4. Simulation result in critical point
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A survey of robust controler design for stage

positioning with ball screw feed drive system

Shogo Yamada1 and Hiroshi Fujimoto1

I. RESEARCH OVERVIEW

Ball screw feed drive system is a mechanism that converts

the rotaional motion of a motor into the translational motion

with a ball screw and nut, and it is widely used in micron

scale positioning or motion trajectory control [1] [2].

As shown in the figure below, the ball screw drive consistes

of a screw supported by thrust bearings at both ends and a nut

with recurculating balls [1].

Ball screw feed drive system is characterized by high

effciency, low friction, low heating, low sensitivity to external

forces and inertia changes and high service life. Therefore,

ball screw feed drives are widely used in various fields such

as machine tools, semicondoctor manufacturing equipment,

aerospace equipment, vehicles, various elevating mechanisms,

textile machinery and some other equipment [1] [2].

As important drives and transmission element, ball screw

drives need to be faster with high tracking accuracy [2]. One of

the challenges to improve tracking performance of ball screw

feed drives is parameter variation.

Topic 1 Adaptive vibration suppression perfect tracking control

In our laboratory, an adaptive perfect tracking con-

trol(AVSPTC) method for system with time-varying modes

was proposed [3].

This study focuses on the changes of the workpiece mass

and table position. AVSPTC is a method which combines the

recursive least squares algorithm with multirate feedforward.

The block diagram is shown in the figure below.

However, this study has not been able to verify the online

estimation against load mass variation in actual machine

experiments.

1 The authors are with the University of Tokyo, 5-1-5, Kashiwanoha,

Kashiwa, Chiba, 277-8561, Japan

Topic 2 My research topic

I surveyed research on Gain-scheduling robust control

which takes into account both the workpiece mass changes

and table position-dependent dynamics [4], and research on

robustness of Final-state control [5].

The proposed control strategy in [4] is illustrated below.

This method would be a good comparative candidate for my

research.

As for my future research, I would like to take over [3],

and design perfect tracking controler which have robustness,

and inplement it on actual equipment. I am wondering if I can

incorporate the method which is uesd in [5].
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Identification and Motion Control for a Maglev

Linear Synchronous Motor

Yueying Yang1, Wataru Ohnishi1 and Takafumi Koseki1

I. RESEARCH INTRODUCTION

The rapid development of technology and industrial man-

ufacturing has created a growing demand for super-high-

speed, high-precision, and dust-free precision devices. Thanks

to their frictionless advantages and unique operational di-

rection, Maglev linear motors have emerged as an up-and-

coming solution for conveyors in these industries. Our research

group has successfully developed an Iron-core Transverse Flux

Permanent Magnet Linear Synchronous Motor(TF-PMLSM),

incorporating attractive EMS technology. This design ensures

high thrust density and substantial load capacity [1], [2].

However, this design also presents challenges as it amplifies

the system’s inherent instability due to the attractive forces

between the permanent magnets and the core. Therefore, this

research focuses on designing a robust controller for the

maglev system to enhance disturbance rejection performance

and overall robustness.

II. RESEARCH TOPICS

The structure and dynamic modeling for TF-PMLSM [2]

The 3D model of the TF-PMLSM is shown in Fig.1a. The

propulsion system consists of nine C-shaped armature cores at

each side that embed the permanent magnet. The mover can be

driven in the x-direction by applying three phase current into

the armature coils. The levitation system consists of two E-

shaped electromagnets. We can actively control three degrees

of freedom, heave z, pitch θ

y
, and roll θ

x
by the DC in the

levitation coils.

(a) 3D model of the machine
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(b) Dynamic diagram

Fig. 1: The structure of TF-PMLSM

We simplify the complex coupled system into a single-input,

single-output(SISO) system. This approach allows us to derive

an approximate linear model of the levitation system through a

series of steps, including the building magnetic circuit model

1 The authors are with the Department of Electrical Engineering and Infor-
mation Systems Graduate School of Engineering, The University of Tokyo,

Japan, corresponding e-mail: y.yang@ctl.t.u-tokyo.ac.jp .

of the E-type electromagnet, coordinate transformation, and

linearization.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gz(s) =
Δz(s)

Δiz(s)
=

kizz

Ms2 − (kzz + kzp)

gθy (s) =
Δθy(s)

Δiθy (s)
=

kiyy

Iyys
2
− (kyy + kyp)

gθx(s) =
Δθx(s)

Δiθx(s)
=

kixx

Ixxs
2
− (kxx + kxp)

(1)

Feedback Control Design for a 3-DOF Magnetic Levitation

System based on I-PD Closed-Loop System Identification [3]

For three independent models in (1). We employed the

I-PD feedback controllers as the position control strategy.

By repeatedly tuning the parameters of the controller, we

achieve a stable levitation of the system. In addition, we

conducted identification experiments of the frequency domain

using Chirp-Sine signals for the maglev system to modify the

mathematical model.

+

−+ −
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I
z∗ +

Chirp Sine
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−

Current Controller
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i
∗
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Fig. 2: I-PD feedback control strategy

100 102
-100

-80

-60

100 102

-80

-60

-40

100 102

-80

-60

-40

100 102

-240

-220

-200

-180

100 102
-300

-250

-200

-150

100 102
100

150

200

100 102
0

0.5

1

100 102
0

0.5

1

100 102
0

0.5

1

Fig. 3: Three SISO Frequency Response Functions of Eq (1)

The frequency response functions of three degrees of free-

dom obtained by the system identification experiments are

shown in Fig. 3. And with this nominal model, we redesigned
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the parameters of the I-PD controller to improve the levitation

performance with the open-loop Nyquist plots and sensitivity

functions.

Fig. 4: Open-loop Nyquist plots with different controllers

Proposal for Estimation of the Vertical Center of Gravity and

the Decoupling Control with thrust and pitch 2-DoF [4]

For linear motors with large thrust density, if there is a

shift of the center of gravity in the vertical direction, the

stability performance of the maglev system may be delete-

riously affected by the thrust. This not only restricts the load

capacity but also significantly impacts the control precision.

Therefore, this topic will aim to estimate the vertical center of

gravity using the recursive least squares method and eliminate

the coupling between thrust and pitch by designing a pre-

compensator.
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(b) Block diagram of 2-DoF

Fig. 5: Diagram of estimation ẑ and decoupled control

After adding the propulsion system, the free body diagram

for 2-DoF in the x-y cross-section is shown in Fig.5a, which

is the side view of Fig.1a. τ

θy
is the torque generated by

attractive levitation force in θ

y
direction. f

x
is the thrust

produced by the propulsion system. Because the change of

the vertical center gravity z

g
, f

x
produces a torque on θ

y
DoF,

which is τ

fx
. The dynamic equations of the system in the x

and θ

y
directions with the expression of z

g
are as follows.{

Iyy θ̈y = τθy + τfx + τmg + τpy

mẍ = fx

⇒ fxzg = Iyy θ̈y − τθy − τmg − τpy

(2)

Without considering the case of x

g
, we could derive the

linear magnetic torque τ

θy
as (3). When bringing (3) into

dynamic functions (2), we can deduce the new expression

about the direction of θ
y

as (4). Finally, the coupling influence

between the x and the θ
y

DoF could be suppressed by inserting

a pre-compensator as in Fig. 5b.

τθy = kyyθy + (kiy + kyp)iθy (3)

Δθy(s) =
kiyΔiθy (s) + zgfx(s)

Iyys
2
− (kyy + kyp)

= gθy(s)Δiθy (s) + gxθy(s)fx(s)

(4)

Finally, we verify the proposal of the vertical center of

gravity estimation and the decoupling control by simulation

as follows. The results contain the different cases with and

without the pre-compensator. The first half of the experiment,

t ∈ [0, 0.9), focused on the situation where the vertical center

of gravity changes. In contrast, the second part, t ∈ [0.9, 1.5],
checked the situation of varying thrust. Compared to the case

without the pre-compensator, both the estimation of ẑ

g
and

the state of the θ

y
DoF showed noticeable improvements.

0 0.5 1 1.5

0

2

4

6

8

10

12
10-3

(a) Estimated ẑg

0 0.5 1 1.5

-1

0

1

10-4

(b) Pitch angle θy

Fig. 6: Estimation and decoupling results verification

III. FUTURE WORKS

In the future, our next steps involve conducting physical

experiments to verify the impact of the vertical center of grav-

ity speculation and decoupling control. Additionally, we will

explore the coupling relationship between the three degrees of

freedom: z, θ
y
, and θ

x
, within the maglev system. Our aim is

to design an optimal MIMO control system to realize better

stability performance.
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H Coil Insertion Section

Study of Current Command Generation Method for Iron 

Loss Reduction in Permanent Magnet Synchronous Motors

Low-order harmonic current suppression

Kaiki Akizuki, Toshiyuki Fujita, Sakahisa Nagai, Hiroshi Fujimoto The University of Tokyo

Evaluation of iron loss by H-coil methodH-coil method

Repetitive Perfect Tracking Control RPTC

FFT results of d-axis currentFFT results of q-axis currentComparison of current waveform

Harmonic currents are considered one of the factors 

that increase iron loss.

Repetitive Perfect Tracking Control RPTC [1] is used to 

 suppress low-order harmonic currents. 

The features of RPTC
1. RPTC is composed of Perfect Tracking Control (PTC)[2] and Periodic Signal 

Generator PSG .
2. Memory in PSG can record and compensate for errors to suppress periodic 

disturbances.

[1] Y. Inagaki, M. Mae, O. Shimizu, S. Nagai, H. Fujimoto, T. 

Miyajima, Y. Yasuda, A. Yamagiwa

Current Suppression on Iron Loss of IPMSM Using Repetitive 

Vol. 11, No. 2, pp. 317-326, 2022.

[2]

based on multirate feedforward controll with generalized 

sampling Transactions on Industrial Electronics, 

Vol. 48, No. 3, pp. 636-644, 2001

The structure of motor bench
In motor side, there are search coils to measure the 

electrical signal of magnetic flux density(B).

H-coil is used to measure the electrical signal of

magnetic field strength(H).

Data processing method
Data processing using software such as matlab

Calculating the electrical signal using the following

equation, it is possible to obtain the wave-

forms of B and H.

*Odd order components are extracted to obtain hysteresis

  characteristics.

Magnetic field strength Magnetic flux density

Experimental conditions
Rotation per minute : 3000rpm

Current command value 

d-axis : -0.137 A q-axis 1A MTPA

Carrier frequency : 10kHz

Comparison of iron loss using PI control and 
RPTC

It is possible to draw the BH curve using H-coil method.

Comparing with the average of three times measurement 

results.

PI control : 0.5178 W    RPTC : 0.4740 W

Low-order current harmonics are suppressed, which

reduces low-order components of magnetic field strength.

Magnetic field strength Magnetic flux density

BH curve Comparison the values of iron loss

8.45 % reduction !
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/department of mechanical engineering

Fault Diagnosis for Precision Mechatronics

Koen Classens1, Maurice Heemels1, Tom Oomen1,2

control systems technology section

III. CONTROL RECONFIGURATION

FAULT DIAGNOSIS FRAMEWORK

[1] K. Classens, W. P. M. H. M. Heemels and T. Oomen, Digital Twins in Mechatronics: From Model-based Control to Predictive Maintenance, 2021
IEEE 1st International Conference on Digital Twins and Parallel Intelligence, 2021.
[2] K. Classens, M. Mostard, W. P. M. H. M. Heemels and T. Oomen, Fault Detection for Precision Mechatronics: Online Estimation of Mechanical
Resonances, 2nd Modeling, Estimation and Control Conference, 2022.
[3] A. Varga, Solving Fault Diagnosis Problems. Springer, 2017.
[4] K. Classens, W. P. M. H. M. Heemels and T. Oomen, Direct Shaping of Minimum and Maximum Singular Values: An Synthesis Approach
for Fault Detection Filters, IFAC 22nd Triennial World Congres, 2023.

BACKGROUND & MOTIVATION

k.h.j.classens@tue.nl

1 Control Systems Technology

Section, Dept. of Mechanical

Engineering, Eindhoven

University of Technology
2 Delft Center for Systems and

Control, Dept. 3mE, Delft

University of Technology

I. PARAMETRIC FAULT DIAGNOSIS[2]

REFERENCES & FURTHER READING

High-tech industry faces:

� Unexpected downtime

� Major production loss

Despite:

� Excellent mechanical design

� Advanced control strategies

Solution:

� Online fault diagnosis

� Predictive maintance

Preliminary

overview paper!

II. ADDITIVE FAULT DIAGNOSIS[3,4]

Problem:

� Shifting properties, e.g.,

resonance dynamics

Affect:

� Stability margins

� Performance

Problem:

� Minimize performance loss due to faults

Approach:

Problem definition:

� Estimate parametric faults fpar
� Detect and isolate additive faults fadd, Δ

� Controller reconfiguration

� Online reconfiguration

New
app

lica
tion

dom
ain

New
the

ory

Opportunity:

� Accurate and familiar models

� Real-time data

� Control paradigms

Challenge:

� Closed-loop aspects

� Interpretable

� Operational data

Model-based

No dedicated experiments

Setup:

� Overactuated and oversensed

� Variable stiffness in design

Problem:

� Additive faults in sensors and actuators

� Successful fault isolation

� Robustness guarantees

OPPORTUNITY & CHALLENGE[1]

Typically disregarded

after controller design

Link: https://youtu.be/huPfYoUQNyALink: https://youtu.be/RtVXs5F9p1o

Exploit here!

Healthy

System Down

Predictive
Mainenance

Time

Failure

� Virtual actuators and sensors

� Fault hiding

Setup:

� Overactuated and oversensed Opportunity!

Fault-tolerant control

Link: https://youtu.be/SxvkYvP-w1I

Scan for overview video
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P =
{

: = (ˆ + Δ)(ˆ − Δ)−1
}
, |||Δ||∞ < γ

( , ˆ) = || − ˆ||∞ = ||Δ||∞, =
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A study on Multi-rate Adaptive Control on Five-axis 
Machine Tools

RLS Estimation:
(1) Estimate:

:

(2) Update:

Diagram of Multi-raet Adaptive Robust Control

Multi-ratee Adaptivee Robustt Controll Theory

Chenyu GE, BINH MINH NGUYEN, Hiroshi Fujimoto (The University of Tokyo)

Onlinee Adaptivee Algorithmm - RLS

0 2 4 6 8 10 12
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⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅Exp: Reference Trajectory
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Part of 5-axis Machine Tool

Dynamicc Model:
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/ department of mechanical engineering

Max van Haren
LeonidMirkin
Lennart Blanken
Tom Oomen
m.j.v.haren@tue.nl

Method

Introduction Experimental Results

Conclusions

• Output analysis of slow-sampled systems.
• Identification of slow-sampled systems above
Nyquist enabled by exploiting smoothness.

• Experimental results give promising results.

FRF Identification Above the
Nyquist Frequency

References

/ Control Systems Technology

[1] M. van Haren, L.Mirkin, L. Blanken and T. Oomen, “Beyond Nyquist in Frequency Re-
sponse Function Identification: Applied to Slow-Sampled Systems”, IEEE L-CSS, 2023

Goal: Identifying FRFs of slow-sampled systems
above the Nyquist frequency, see Figure 1.

Example: Vision-in-the-loop systems.

Main challenge: Aliasing that occurs due to
downsampling

Method: Exploiting local smoothness of FRF and
utilizing neighboring outputs [1].

Key result: Disentangling aliasing enabled by
window

[Yl(k − n)· · ·Yl(k + n)]=
1

F

F−1∑

i=0

G (Ωk+iM)U(k + iM) +

R∑

j=1

gj(k + iM)Kji

The framework is validated on the experimen-
tal setup seen in Figure 4. The identified FRFs us-
ing a traditional and the developed approach are
shown in Figures 5 and 6.

Observation: Method identifies slow-sampled
significantly more accurate compared to tradi-
tional approach.

The main challenge is described by output

Yl(k) =
1

F

F−1∑

f=0

G
(
Ωk+Mf

)
U(k +Mf ).

Figure 2 visually illustrates the main challenge.

SdG
uh yh yl

νl

Figure 1: Identification setting, where high-rate FRF G is to be
identified, using fast u and slowly-sampled yl .

Figure 2: FRF G (-), that is excited (-), resulting in aliasing at
output (-), where 3 unknowns appear but only 1 data point.

Frequency bin [-]
k k+M k+2M

M
a
g
n
it
u
d
e

Frequency bin [-]

k+r k+r+M k+r+2M

M
a
g
n
it
u
d
e

Figure 3: Exploiting smoothness of FRF to identify G (-). Each
bin k has F(R+ 1) = 6 unknowns, but 2n+ 1 = 7 data points.

F unknowns1 data point

→ Smart input required (e.g. random-phaseMS)

F(R+ 1) unknowns2n+ 1 data points

Property Variable Value

Fast sampling rate fs,h 120 Hz

Slow sampling rate fs,l 30 Hz

Downsampling factor F 4
Measurement time Tm 120 s
Window size nw 150
Polynomial degree R 2

Figure 4: Experimental (left) setup and (right) settings.

Figure 5: True (-) and identified traditional FRF (-) by ignoring
aliasing.

Figure 6: Identified FRF with developed method (-) and associ-
ated variance (-).
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Study on Estimation and Adjustment of Lateral Misalignment 

in Dynamic Wireless Power Transfer 

with Steering Actuator and Yaw Moment

Tomoaki Koishi, Binh-Minh Nguyen, Osamu Shimizu, Shota Yamada, Hiroshi Fujimoto The University of Tokyo

ApproachBackground

Dynamic Wireless Power Transfer (DWPT)

Transfer power to running EVs through coils

Decrease efficiency

Problem: Lateral misalignment in DWPT
Lateral misalignment

Eliminating lateral misalignment

leads to increasing the efficiency

Estimate position 

from marker

Good

Available without DWPT

Already in practical use

Limitation

Intolerant to 

misalignment between 

marker and Tx coil

Estimate position 

from Tx coil

Good

Directly estimate the 

position from the Tx coil

Limitation

Unavailable with 

excessive misalignment

GPS, camera, etc. DWPT information 

(voltage, current)

Conventional localization method

DWPT system Longitudinal Lateral

Parallel power lines [9,10]

Multiple coils

Circular coils [17] [8]

Rectangular 

coils
[11] This study

Estimation: Fusion of DWPT current and IMU

Control: Steering and yaw moment input

Observer + calculation of lateral misalignment

Deal with the different sampling rate

FB control of lateral misalignment and yaw angle

Experimental result of estimation method

Tx coil

p

Initial: °

Observer + calculation of lateral misalignment

Deal with the different sampling rate

Compared to image processing method

Estimation error increased as time passed

multiple coils are expected to reduce the error

Result of estimationCondition

Based on the fusion of WPT and IMU, this study proposes 

a new method for estimating and controlling the lateral 

misalignment and yaw angle of electric vehicles. 

The overall control system uses LFO and the PD 

controller to control the lateral misalignment, and YMO 

and the P controller of the yaw angle and the yaw rate.

Conclusion
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/department of mechanical engineering

NEURAL NETWORKS FOR

FEEDFORWARD CONTROL
Johan Kon1, Dennis Bruijnen2, Marcel Heertjes1,3, Tom Oomen1

control systems technology section

j.j.kon@tue.nl

1 Control Systems Technology

Section, Dept. ofMechanical

Engineering, TU/e
2 Philips Engineering Solu-

tions
3 ASML Mechatronics System

Design

REFERENCES & FURTHER READING

Present: feedforward parametrizations based

on physicalmodel structures:

Unmodeled dynamics:

• Complex nonlinear friction

• Dynamic links/cables

• Actuator characteristics

Increasing

modelling

effort

C P

F

r

Industrial challenges

I: Physics-guided neural networks[4],[5]

II: Learning using closed-loop data[3]

Limiting for

performance

How to compensate unmodeled dynamics

through data-driven learning[2]:

• Employ universal approximation structures

⇒ Can capture any unmodelled dynamics

Neural networks as universal approximators[1]

• Approximate any continuous function

• Parametric

Use prior knowledge of physics

F

e yu

This poster

f

f = Mθ(r)+Cφ(r)

Both u and y contain the same noise

• Least-squares (LS): biased
• Instrumental variables (IV): consistent

• IV⇒ superior tracking performance

Cφ should be complementary to Mθ

Penalize Cφ(r) in subspace spanned by Mθ(r) via

orthogonal projection-based regularization

F1 Mass and snap

F2 Rational transfer functions

F3 Nonlinear multibody

f = WL (WL−1 · · · (W0Ψ(r) + b0) · · ·+ bL−1) + bL

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep learning. MIT Press 2016

[2] L. Aarnoudse, J. Kon, et al, ”Control-Relevant Neural Networks for Feedforward Control with

Preview,” to appear, 2022.

[3] J. Kon,M. Heertjes, T. Oomen, ”Neural Network Training Using Closed-Loop Data: Hazards

and an Instrumental Variable (IVNN) Solution,” IFAC Workshop on Adaptive and Learning Control

Systems, 2022.

[4] J. Kon, D. Bruijnen, J. van de Wijdeven,M. Heertjes, T. Oomen, ”Physics-Guided Neural Net-

works for Feedforward Control: An Orthogonal Projection-Based Approach,” Proc. Am. Control

Conf., 2022.

[5] J. Kon, D. Bruijnen, J. van de Wijdeven,M. Heertjes, T. Oomen, ”Unifying model-based and

neural network feedforward: Physics-guided neural networks with linear autoregressive dynam-

ics,” 61st Conf. Decis. Control, 2022.

[6] J. Kon, D. Bruijnen, J. van de Wijdeven, R. Tóth,M. Heertjes, T. Oomen, ”Direct learning for

parameter-varying feedforward control: A neural network approach,” to appear, 2023.

Mθ

Cφ

r f

Noise power

R
e
si
d
u
a
l
n
o
rm

‖
u
−
F
(y
)‖

2 2

with regularization without regularization

Time [s]

In
p
u
t
[N
]

Time [s]

Required
Combination
Physics
NN

III: LPV feedforward for position-varying zeros[6]

Position-varying dynamics inmechanical systems

� LTI feedforward too limited

uk = −

∑Nb−1

i=1
bi(ρ)q

−iuk +
∑Na−1

i=0
ai(ρ)q

−irk

LPV-IO feedforward with NN scheduling

ρ

Learn position dependent dynamics!

Build in stability guarantees!

LPV
Required

LTI
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Learning Uncertainty For

Advanced Motion Control
Paul Tacx, Tom Oomen

Control Systems Technology

[1] P. Tacx, and T. Oomen. AccurateH∞-norm estimation via Finite-Frequency Norms of Local

Parametric Models. In Proc. 2021 Americ. Contr. Conf., New Orleans, LA, USA, 2021.

[2] P. Tacx, and T. Oomen. Comparing Multivariable Uncertain Model Structures for Data-driven

Robust Control: Visualization and Application to a Continuously Variable Transmission. Int. J. of

Robust and Nonlin. Contr., 2023.

[3] I. Postlethwaite et al., Principal Gains and Principal Phases in the Analysis of Linear Multivari-

able Feedback systems, IEEE T. on Autom. Contr, 1981, Vol 26(1), Pages 32-46.

[4] T. Oomen et al., Connecting System Identification and Robust Control for Next-generation

Motion Control of a Wafer Stage, IEEE T. on Contr. Sys. Tech., 2014, Vol. 22(1), Pages 102-118.

Background

p.j.m.m.tacx@tue.nl

t.a.e.oomen@tue.nl

Control Systems Technology,

Dept. of Mechanical Engineering,

TU/e

III. One-step Centralized Overactuation

References & Further Reading

Next-generation motion systems:

Approach:

(Multivariable) Bode of P

� Multivariable magnitude:

=⇒ Singular Values

� Multivariable phase?

=⇒ Numerical range!

LMI-based approach

Problem:

Overactuated reticle

stage (FFR) control

Approach:

One-step centralized control

FRF Pext RP

Result:

This poster: From data to Robust Performance (RP)

I. Data-based H
∞
-norm estimation [1]

II. Visualizing & Comparing P [2]

TNO Deformable Mirror

57-217-2000 Actuators

ASML Reticle Stage (FFR)

14× 14

Problem:

Uncertainty bound γ crucial

for RP

� ‖Δ‖
∞

� γ: Conservative

� ‖Δ‖
∞

> γ: No guarantees

� ‖Δ‖
∞

≤ γ: RP

=⇒ H
∞
-norm estimation

is crucial

Approach:

Exploit local smoothness through local

modeling techniques

Δo(ξk+r) ≈D
−1
k

(r)Nk(r) (LMFD)

TΔ(ξk+r) ≈D
−1
k

(r)Mk(r) (LMFD)

Global H
∞
-norm through local finite-frequency

L
∞
-norms (gKYP)

Result: Accurate H
∞
-norm estimation

Problem:

Uncertainty structure is crucial for RP

Increasing

complexity!

� PADD
= P̂+Δ

� PdY
= (N̂+ DcΔ)(D̂+ NcΔ)

−1

Key issue: Design, comparison, insight?

Visualize P !

� Interaction =⇒ Inherently multivariable

� Active control =⇒ many inputs and outputs

=⇒ Model-based control

FRF P s.t. Po ∈ P CRP

Result:

Industrial CVT (2× 2)

Traditional:

fBW = 60 Hz

This poster:

fBW = 160 Hz

�

�

Principal Region [2], [3]

� Large

modelset

� Low

performance

� Tight

modelset

� High

performance

PADD

PRCR [4]
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Locations

The locations of the workshop, in addition to some useful locations, can be found at https://goo.gl/maps/Uc4Bu3S8

YQXUXaW37, or scan the left QR-code in Figure 1.

Additionally, some recommended food options for dinner and the free lunches can be found at https://docs.google.

com/document/d/1x2zua9fctals_FhCpR7obdFQG-S9Bmy3ztPcJ-uj6e4/edit?usp=sharing, or be found by scanning

the right QR-code in Figure 1.

Figure 1: Left: QR-code for the map containing locations of the seminar. Right: QR-code for recommended lunch and

dinner options.

For the closing ceremony, it is essential that you arrive at the Yakatabune Amikou Ryogoku Pier no later than 17:45.

The location can also be found using https://goo.gl/maps/HgdVpvCeAE5T6iFJ6 and is walking distance from

Ryogoku Station.

On the following pages, a detailed map containing walking routes and the precise locations of the rooms where the pre-

sentations will be held is presented.
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Main Gate

Yasuda Auditorium

Engineering 

Bldg. 2

Engineering

Bldg. 3

1
76

Campus Map

Floor Map

Rm. 

245

Elevator
(Lift)

From New Bldg. 2 From New Bldg. 2

Engineering Old Bldg. 2, 4th Floor

E
le

v
a
to

r
(L

if
t)

Rm. 33A
(1A,1B,1C)

Rm. 

33B2

Engineering New Bldg. 2, 3rd Floor

From

Yayoi Gate

Rm.113

Rm.114

Engineering Bldg. 3

(1st Floor)

Date
Bldg./

Floor
Room

7/3 N2 / 3F 33A

7/4 N2 / 3F 33A

7/6
N2 / 3F

33A,

33B2

O2 / 4F 245

7/7
3 / 1F

113,

114

N2 / 4F 245

Date and Venue List
(N: New, O: Old)

(7/7)

(7/6, 7/7)

Rm 3333333A
(7/3, 7/4, 7/6)

(7/6)

For more details on 

the venue per session,

kindly check the schedule.

HONGO
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KASHIWA

Main Gate

Trans. Bldg. 

Kashiwa Campus iwa Campus 

Media Hall 

Venues Map (by Ohnishi-sensei): 

https://qrco.de/be65RB

More information on Kashiwa campus access: https://www.k.u-tokyo.ac.jp/en/gsfs/access/access_map/

Shuttle bus schedule : 
(from Kashiwanoha-Campus St. TX)

Kashiwanoha-
Campus St.

East
Exit

West
Exit

Lalaport

Bus Stop for 
SHUTTLE bus

Other buses can be found from the link above.

Please say your destination 

(Trans. Bldg: ki-ban-tou) to the driver.

The shuttle bus is free for visitors.

Each bus capacity is 17 people.
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